Source code for assimulo.examples.ida_with_jac_spgmr
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (C) 2010 Modelon AB
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import numpy as N
import pylab as P
import nose
from assimulo.solvers import IDA
from assimulo.problem import Implicit_Problem
[docs]def run_example(with_plots=True):
r"""
An example for IDA with scaled preconditioned GMRES method
as a special linear solver.
Note, how the operation Jacobian times vector is provided.
ODE:
.. math::
\dot y_1 - y_2 &= 0\\
\dot y_2 -9.82 &= 0
on return:
- :dfn:`imp_mod` problem instance
- :dfn:`imp_sim` solver instance
"""
#Defines the residual
def res(t,y,yd):
res_0 = yd[0] - y[1]
res_1 = yd[1] + 9.82
return N.array([res_0,res_1])
#Defines the Jacobian*vector product
def jacv(t,y,yd,res,v,c):
jy = N.array([[0,-1.],[0,0]])
jyd = N.array([[1,0.],[0,1]])
j = jy+c*jyd
return N.dot(j,v)
#Initial conditions
y0 = [1.0,0.0]
yd0 = [0.0, -9.82]
#Defines an Assimulo implicit problem
imp_mod = Implicit_Problem(res,y0,yd0,name = 'Example using the Jacobian Vector product')
imp_mod.jacv = jacv #Sets the jacobian
imp_sim = IDA(imp_mod) #Create an IDA solver instance
#Set the parameters
imp_sim.atol = 1e-5 #Default 1e-6
imp_sim.rtol = 1e-5 #Default 1e-6
imp_sim.linear_solver = 'SPGMR' #Change linear solver
#imp_sim.options["usejac"] = False
#Simulate
t, y, yd = imp_sim.simulate(5, 1000) #Simulate 5 seconds with 1000 communication points
#Basic tests
nose.tools.assert_almost_equal(y[-1][0],-121.75000000,4)
nose.tools.assert_almost_equal(y[-1][1],-49.100000000)
#Plot
if with_plots:
P.plot(t,y)
P.xlabel('Time')
P.ylabel('State')
P.title(imp_mod.name)
P.show()
return imp_mod,imp_sim
if __name__=='__main__':
mod,sim = run_example()