Source code for assimulo.examples.ida_with_jac_spgmr

#!/usr/bin/env python 
# -*- coding: utf-8 -*-

# Copyright (C) 2010 Modelon AB
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import numpy as N
import pylab as P
import nose
from assimulo.solvers import IDA
from assimulo.problem import Implicit_Problem


[docs]def run_example(with_plots=True): r""" An example for IDA with scaled preconditioned GMRES method as a special linear solver. Note, how the operation Jacobian times vector is provided. ODE: .. math:: \dot y_1 - y_2 &= 0\\ \dot y_2 -9.82 &= 0 on return: - :dfn:`imp_mod` problem instance - :dfn:`imp_sim` solver instance """ #Defines the residual def res(t,y,yd): res_0 = yd[0] - y[1] res_1 = yd[1] + 9.82 return N.array([res_0,res_1]) #Defines the Jacobian*vector product def jacv(t,y,yd,res,v,c): jy = N.array([[0,-1.],[0,0]]) jyd = N.array([[1,0.],[0,1]]) j = jy+c*jyd return N.dot(j,v) #Initial conditions y0 = [1.0,0.0] yd0 = [0.0, -9.82] #Defines an Assimulo implicit problem imp_mod = Implicit_Problem(res,y0,yd0,name = 'Example using the Jacobian Vector product') imp_mod.jacv = jacv #Sets the jacobian imp_sim = IDA(imp_mod) #Create an IDA solver instance #Set the parameters imp_sim.atol = 1e-5 #Default 1e-6 imp_sim.rtol = 1e-5 #Default 1e-6 imp_sim.linear_solver = 'SPGMR' #Change linear solver #imp_sim.options["usejac"] = False #Simulate t, y, yd = imp_sim.simulate(5, 1000) #Simulate 5 seconds with 1000 communication points #Basic tests nose.tools.assert_almost_equal(y[-1][0],-121.75000000,4) nose.tools.assert_almost_equal(y[-1][1],-49.100000000) #Plot if with_plots: P.plot(t,y) P.xlabel('Time') P.ylabel('State') P.title(imp_mod.name) P.show() return imp_mod,imp_sim
if __name__=='__main__': mod,sim = run_example()