lsodar_vanderpol.py

assimulo.examples.lsodar_vanderpol.run_example(with_plots=True)[source]

Example for the use of LSODAR method to solve Van der Pol’s equation

\[\begin{split}\dot y_1 &= y_2 \\ \dot y_2 &= \mu ((1.-y_1^2) y_2-y_1)\end{split}\]

with \(\mu=\frac{1}{5} 10^3\).

on return:

  • exp_mod problem instance
  • exp_sim solver instance

Final Run Statistics: LSODAR: Van der Pol's equation 

 Number of steps                       : 663
 Number of function evaluations        : 1513
 Number of Jacobian evaluations        : 96
 Number of state function evaluations  : 0
 Number of state events                : 0

Solver options:

 Solver                  : LSODAR 
 Absolute tolerances     : [ 0.0001  0.0001]
 Relative tolerances     : 0.0001
 Starter                 : classical

Simulation interval    : 0.0 - 2.0 seconds.
Elapsed simulation time: 0.0276560783386 seconds.
_images/lsodar_vanderpol.png

Note

Press [source] (to the top right) to view the example.