glimda_vanderpol.py

assimulo.examples.glimda_vanderpol.run_example(with_plots=True)[source]

Example for the use of GLIMDA (general linear multistep method) to solve Van der Pol’s equation

\[\begin{split}\dot y_1 &= y_2 \\ \dot y_2 &= \mu ((1.-y_1^2) y_2-y_1)\end{split}\]

with \(\mu= 10^6\).

on return:

  • imp_mod problem instance
  • imp_sim solver instance

Final Run Statistics: Glimbda Example: Van der Pol (implicit) 

 Number of steps                           : 378
 Number of function evaluations            : 2276
 Number of Jacobian evaluations            : 617
 Number of error test failures             : 11
 Number of LU decompositions               : 617
 Number of nonlinear convergence failures  : 0

Solver options:

 Solver                  : GLIMDA (implicit)
 Tolerances (absolute)   : 0.0001
 Tolerances (relative)   : 0.0001

Simulation interval    : 0.0 - 2.0 seconds.
Elapsed simulation time: 0.0931279659271 seconds.
_images/glimda_vanderpol.png

Note

Press [source] (to the top right) to view the example.