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Chapter 1. Introduction
1.1. About JModelica.org
JModelica.org is an extensible Modelica and FMI-based open source platform for optimization, simulation and
analysis of complex dynamic systems. The main objective of the project is to create a viable open source platform
for simulation and optimization of Modelica models, while offering a flexible platform serving as a virtual lab for
algorithm development and research. JModelica.org is intended to provide a platform for technology transfer where
industrially relevant problems can inspire new research and where state of the art algorithms can be propagated
from academia into industrial use. JModelica.org is a result of research at the Department of Automatic Control,
Lund University, [Jak2007] and is now maintained and developed by Modelon AB in collaboration with academia.

JModelica.org offers the following key features:

• A Modelica compiler compliant with the Modelica language specification 3.2.2 and supporting the full Modelica
Standard Library version 3.2.2 build 3. The compiler generates Functional Mock-up Units (FMUs), including
Model Exchange and Co-simulation as well as version 1.0 and 2.0 of the FMI standard.

• Dynamic simulation algorithms for integration of large-scale and stiff systems. Algorithms include CVode and
Radau.

• Dynamic optimization algorithms based on collocation for solving optimal control and estimation problems.
Dynamic optimization problems are encoded in Optimica, an extension to Modelica.

• A derivative-free model calibration algorithm to estimate model parameters based on measurement data.

• Scripting APIs in Python are available to script automation of compilation, simulation and optimization of Mod-
elica and FMI models.

1.2. Mission Statement
To offer a community-based, free, open source, accessible, user and application-oriented Modelica environment
for optimization and simulation of complex dynamic systems, built on well-recognized technology and supporting
major platforms.

1.3. Technology
JModelica.org relies on the modeling language Modelica. Modelica targets modeling of complex heterogeneous
physical systems, and is becoming a de facto standard for dynamic model development and exchange. There are
numerous model libraries for Modelica, both free and commercial, including the freely available Modelica Standard
Library (MSL).

http://www.modelica.org
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A unique feature of JModelica.org is the support for the language extension Optimica. Optimica enables users to
conveniently formulate optimization problems based on Modelica models using simple but powerful constructs
for encoding of optimization interval, cost function and constraints.

The JModelica.org compilers are developed in the compiler construction framework JastAdd. JastAdd is based on
a number of different concepts, including object-orientation, aspect-orientation and reference attributed grammars.
Compilers developed in JastAdd are specified in terms of declarative attributes and equations which together forms
an executable specification of the language semantics. In addition, JastAdd targets extensible compiler develop-
ment which makes it easy to experiment with language extensions.

For user interaction JModelica.org relies on the Python language. Python offers an interactive environment suit-
able for scripting, development of custom applications and prototype algorithm integration. The Python packages
Numpy and Scipy provide support for numerical computation, including matrix and vector operations, basic linear
algebra and plotting. The JModelica.org compilers as well as the model executables and numerical algorithms
integrate seamlessly with Python and Numpy.

JModelica.org offers support for the Functional Mock-up Interface (FMI) standard. FMI specifies a format for
exchange of compiled dynamic models and it is supported by a large number of modeling and simulation tools,
including established Modelica tools such as Dymola, OpenModelica, and SimulationX. FMI defines a model
execution interface consisting of a set of C-function signatures for handling the communication between the model
and a simulation environment. Models are presented as ODEs with time, state and step events. FMI also specifies
that all information related to a model, except the equations, should be stored in an XML formated text-file. The
format is specified in the standard and specifically contains information about the variables, names, identifiers,
types and start attributes. A model is distributed in a zip-file with the extension '.fmu', these zip-files containing the
models are called FMUs (Functional Mock-up Units). FMI version 1.0 and 2.0 specifies two types of FMUs, either
Model Exchange or Co-Simulation. The difference between them is that in a Co-Simulation FMU, the integrator
for solving the system is contained in the model while in an Model Exchange FMU, an external integrator is needed
to solve the system. The JModelica.org compiler supports export of FMUs. FMUs can be imported into Python
using the Python packages included in the platform.

http://jastadd.org
http://www.python.org/
https://www.fmi-standard.org/
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Chapter 2. Installation
2.1. Supported platforms
JModelica.org is supported on Linux and Windows (7, 10) with 32-bit or 64-bit architectures.

2.2. Installation on Windows
Pre-built binary distributions for Windows are available in the Download section of www.jmodelica.org.

The Windows installer contains a binary distribution of JModelica.org, bundled with all required third-party soft-
ware components. A list of the third-party dependencies can be found in Section B.1. The installer sets up a pre-
configured complete environment with convenient start menu shortcuts. Installation instructions are found in Sec-
tion 2.2.1.

2.2.1. Installation

Follow these step-by-step instructions to install JModelica.org using the Windows binary distribution.

1. Download a JModelica.org Windows binary installer and save the executable file somewhere on your com-
puter.

2. Run the file by double-clicking and selecting "Run" if prompted with a security warning. This will launch an
installer which should be self-explanatory.

Note that during installation of JModelica.org you will be asked whether to install Graybox OPC Automation
Wrapper or not. If you choose yes, the Graybox OPC Automation Wrapper dlls will be added to the windows reg-
istry. Uninstalling the OPC server during uninstallation of this JModelica.org distribution affects other installations
of JModelica.org. More information on the OPC capabilities can be found in Section B.2.

2.2.2. Verifying the installation

Test the installation by starting a IPython or pylab shell from the JModelica.org start menu and run a few examples.
Starting the Python session from the Windows start menu will set all the environment variables required to run
the JModelica.org Python interface.

# Import and run the fmi_bouncing_ball example and plot results
from pyfmi.examples import fmi_bouncing_ball
fmi_bouncing_ball.run_demo()

# Import and run the CSTR example using CasADi and plot results
from pyjmi.examples import cstr_casadi

www.jmodelica.org
http://www.jmodelica.org/binary
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cstr_casadi.run_demo()
        

2.2.3. Compilation from sources

For compiling JModelica.org from sources on Windows there is a Software Development Kit (SDK) available for
download. The SDK is a bundle of tools used to build JModelica.org from source code on Windows, please see
the SDK User's guide, which can be reached from the download site, for more information.

2.3. Installation on Linux systems
This section describes a procedure for compiling JModelica.org from sources on Linux. The instructions have been
verified to work on Ubuntu Linux release 16.04, 64bit.

2.3.1. Prerequisites

2.3.1.1. Installing pre-compiled packages

It is convenient to use a package management system, if available, of the Linux distribution to install the prereq-
uisites. On Ubuntu systems, the apt-get command line program may be used:

sudo apt-get -y install g++
sudo apt-get -y install subversion
sudo apt-get -y install gfortran
sudo apt-get -y install ipython
sudo apt-get -y install cmake
sudo apt-get -y install swig
sudo apt-get -y install ant
sudo apt-get -y install openjdk-8-jdk
sudo apt-get -y install python-dev
sudo apt-get -y install python-numpy
sudo apt-get -y install python-scipy
sudo apt-get -y install python-matplotlib
sudo apt-get -y install cython
sudo apt-get -y install python-lxml
sudo apt-get -y install python-nose
sudo apt-get -y install python-jpype
sudo apt-get -y install zlib1g-dev
sudo apt-get -y install libboost-dev

The following versions of each package have been tested and verified to work. Please note that in some cases, the
listed version is the minimum required.

Table 2.1 Package versions for Ubuntu

Package Version Note

g++ 5.4.0 Tested version

http://www.jmodelica.org/sdk
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Package Version Note

subversion 1.9.3 Tested version

gfortran 5.4.0 Tested version

ipython 5.3.0 Tested version

cmake 2.8.6 Minimum version

swig 3.0.8 Tested version

ant 1.8.2 Tested version

python-dev 2.7.11 Tested version

python-numpy 1.6.1 Tested version

python-scipy 0.9.0 Tested version

python-matplotlib 1.1.1 Tested version

cython 0.15 Minimum version

python-lxml 2.3.2 Tested version

python-nose 1.1.2 Tested version

python-jpype 0.5.4.2 Tested version

zlib1g-dev 1:1.2.8 Tested version

libboost-dev 1.58.0 Tested version

jcc 2.16 Minimum version

2.3.1.2. Compiling Ipopt

While Ipopt is available as a pre-compiled package for Ubuntu, it is recommended to build Ipopt from sources.
The Ipopt packages provided for Ubuntu have had flaws that prevented usage with JModelica.org. Also, compiling
Ipopt from sources is required when using the linear solvers MA27 or MA57 from the HSL library, since these
are not available as open source software.

First, download the Ipopt sources from https://projects.coin-or.org/Ipopt and unpack the content:

tar xvf Ipopt-3.10.2.tgz

Then, retrieve the third party dependencies:

cd Ipopt-3.10.2/ThirdParty/Blas
./get.Blas
cd ../Lapack
./get.Lapack
cd ../Mumps
./get.Mumps
cd ../Metis

https://projects.coin-or.org/Ipopt


Installation

6

./get.Metis
cd ../../

If you have access to the HSL solvers MA57 or MA27, copy their sources into the directory ThirdParty/HSL. In
the next step, configure and compile Ipopt:

mkdir build
cd build
../configure --prefix=/home/<user_name>/<ipopt_installation_location>
make install

where <user_name> and <ipopt_installation_location> are replaced by the user directory and the installation
directory of choice for Ipopt.

2.3.1.3. Installing JModelica.org with WORHP (optional)

As an alternative to IPOPT for optimization, the CasADi framework in JModelica.org also has support for the solver
WORHP. Note that WORHP is closed source, but offers free personal academic licenses. To compile JModelica.org
with support for WORHP, first obtain the WORHP binaries and a license file from http://www.worhp.de. Set the
environment variables $WORHP to your directory containing the binaries and $WORHP_LICENSE_FILE to your license
file.

Normally, this would be sufficient, but for now the following additional measures are needed. Find the following six
lines in $JMODELICA_SRC/ThirdParty/CasADi/CasADi/interface/worhp/worhp_internal.cpp and remove
them:

addOption("CutLength",OT_REAL,worhp_p_.CutLength,"Scaling factor for Cut recovery
 strategy");
addOption("Ma57PivotThresh",OT_REAL,worhp_p_.Ma57PivotThresh,"Pivoting tolerance for MA57 =
 CNTL(1)");
if (hasSetOption("CutLength")) worhp_p_.CutLength = getOption("CutLength");
if (hasSetOption("Ma57PivotThresh")) worhp_p_.Ma57PivotThresh =
 getOption("Ma57PivotThresh");
setOption("CutLength",worhp_p_.CutLength);
setOption("Ma57PivotThresh",worhp_p_.Ma57PivotThresh);

Find the line

option(WITH_WORHP "Compile the WORHP interface" OFF)

in $JMODELICA_SRC/ThirdParty/CasADi/CasADi/CMakeLists.txt and change OFF to ON.

2.3.2. Compiling

Make sure that all prerequisites are installed before compiling the JModelica.org platform. First, check out the
JModelica.org sources:

svn co https://svn.jmodelica.org/trunk JModelica.org

http://www.worhp.de
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Then configure and build JModelica.org:

cd JModelica.org
mkdir build
cd build
../configure --prefix=/home/<user_name>/<jmodelica_install_location> \
             --with-ipopt=/home/<user_name>/<ipopt_install_location> 
make install
make casadi_interface

where <user_name> and <jmodelica_installation_location> are replaced by the user directory and the in-
stallation directory of choice for JModelica.org.

2.3.3. Testing JModelica.org

In order to verify that JModelica.org has been installed correctly, start an IPython shell using the command /home/
<user_name>/<jmodelica_install_location>/bin/jm_ipython and run a few examples:

# Import and run the fmi_bouncing_ball example and plot results
from pyfmi.examples import fmi_bouncing_ball
fmi_bouncing_ball.run_demo()

# Import and run the CSTR example using CasADi and plot results
from pyjmi.examples import cstr_casadi
cstr_casadi.run_demo()
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Chapter 3. Getting started
This chapter is intended to give a brief introduction to using the JModelica.org Python packages and will therefore
not go into any details. Please refer to the other chapters of this manual for more information on each specific topic.

3.1. The JModelica.org Python packages

The JModelica.org Python interface enables users to use Python scripting to interact with Modelica and Optimica
models. The interface consists of three packages:

• PyModelica Interface to the compilers. Compile Modelica and Optimica code into model units, FMUs. See
Chapter 4 for more information.

• PyFMI Work with models that have been compiled into FMUs (Functional Mock-up Units), perform simula-
tions, parameter manipulation, plot results etc. See Chapter 5 for more information.

• PyJMI Work with models that are represented in symbolic form based on the automatic differentiation tool
CasADi. This package is mainly used for solving optimization problems. See Chapter 6 for more information.

3.2. Starting a Python session

Starting a Python session differs somewhat depending on your operating system.

3.2.1. Windows

If you are on Windows, there are three different Python shells available under the JModelica.org start menu.

• Python Normal command shell started with Python.

• IPython Interactive shell for Python with, for example, code highlighting and tab completion.

• pylab IPython shell which also loads the numeric computation environment PyLab.

It is recommended to use either the IPython or pylab shell.

3.2.2. Linux

To start the IPython shell with pylab on Linux open a terminal and enter the command:

> $JMODELICA_HOME/bin/jm_ipython.sh -pylab

http://www.scipy.org/PyLab


Getting started

9

3.3. Running an example
The Python packages pyfmi and pyjmi each contain a folder called examples in which there are several Python
example scripts. The scripts demonstrate compilation, loading and simulation or optimization of models. The cor-
responding model files are located in the subdirectory files. The following code demonstrates how to run such
an example. First a Python session must be started, see Section 3.2 above. The example scripts are preferably run
in the pylab Python shell.

The following code will run the RLC example and plot some results.

# Import the RLC example
from pyjmi.examples import RLC

# Run the RLC example and plot results
RLC.run_demo()

Open RLC.py in a text editor and look at the Python code to see what happens when the script is run.

3.4. Redefining the JModelica.org environment
When importing pyjmi or pymodelica in Python, the script startup.py is run which sets the environment used by
JModelica.org for the current Python session. For example, the environment variable JMODELICA_HOME points at the
JModelica.org installation directory and IPOPT_HOME points at the Ipopt installation directory. These environment
variables set in startup.py can be overridden by a user defined script: user_startup.py.

The script startup.py looks for user_startup.py in the folder

• $USERPROFILE/.jmodelica.org/ (Windows)

• $HOME/.jmodelica.org/ (unix)

If the script user_startup.py is not found, the default environment variables will be used.

3.4.1. Example redefining IPOPT_HOME

The following step-by-step procedure will show how to redefine the JModelica.org environment variable
IPOPT_HOME:

1. Go to the folder $USERPROFILE (Windows) or $HOME (Linux). To find out where $USERPROFILE or $HOME points
to, open a Python shell and type:

import os
os.environ['USERPROFILE']   // Windows
os.environ['HOME']          // Linux



Getting started

10

2. Create a folder and name it .jmodelica.org (or open it if it already exists)

3. In this folder, create a text file and name it user_startup.py.

4. Open the file and type

environ['IPOPT_HOME']='<new path to Ipopt home>'

5. Save and close.

6. Check your changes by opening a Python shell, import pyjmi and check the IPOPT_HOME environment variable:

import pyjmi
pyjmi.environ['IPOPT_HOME']

3.5. The JModelica.org user forum
Please use the JModelica.org forum for any questions related to JModelica.org or the Modelica language. You can
search in old threads to see if someone has asked your question before or start a new thread if you are a registered
user.

http://www.jmodelica.org/forum
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Chapter 4. Working with Models in
Python
4.1. Introduction to models
Modelica and Optimica models can be compiled and loaded as model objects using the JModelica.org Python
interface. These model objects can be used for both simulation and optimization purposes. This chapter will cover
how to compile Modelica and Optimica models, set compiler options, load the compiled model in a Python model
object and use the model object to perform model manipulations such as setting and getting parameters.

4.1.1. The different model objects in JModelica.org

There are several different kinds of model objects that can be created with JModelica.org: FMUModel(ME/CS)(1/2)
(i.e. FMUModelME1, FMUModelCS1, FMUModelME2, and FMUModelCS2) and OptimizationProblem. The
FMUModel(ME/CS)(1/2) is created by loading an FMU (Functional Mock-up Unit), which is a compressed file
compliant with the FMI (Functional Mock-up Interface) standard. The OptimizationProblem is created by trans-
ferring an optimization problem into the CasADi-based optimization tool chain.

FMUs are created by compiling Modelica models with JModelica.org, or any other tool supporting FMU export.
JModelica.org supports both export and import of FMUs for Model Exchange (FMU-ME) and FMUs for Co-
Simulation (FMU-CS), version 1.0 and 2.0. Generated FMUs can be loaded in an FMUModel(ME/CS) (1/2) object
in Python and then be used for simulation purposes. Optimica models can not be compiled into FMUs.

OptimizationProblem objects for CasADi optimization do not currently have a corresponding file format, but
are transferred directly from the JModelica.org compiler, based on Modelica and Optimica models. They contain a
symbolic representation of the optimization problem, which is used with the automatic differentiation tool CasADi
for optimization purposes. Read more about CasADi and how an OptimizationProblem object can be used for
optimization in Section 6.5 in Chapter 6.

4.2. Compilation
This section brings up how to compile a model to an FMU-ME / FMU-CS. Compiling a model to an FMU-ME /
FMU-CS will be demonstrated in Section 4.2.1 and Section 4.2.2 respectively.

For more advanced usage of the compiler functions, there are compiler options and arguments which can be mod-
ified. These will be explained in Section 4.2.4.

4.2.1. Simple FMU-ME compilation example

The following steps compile a model to an FMU-ME version 2.0:

http://casadi.org
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1. Import the JModelica.org compiler function compile_fmu from the package pymodelica.

2. Specify the model and model file.

3. Perform the compilation.

This is demonstrated in the following code example:

# Import the compiler function
from pymodelica import compile_fmu

# Specify Modelica model and model file (.mo or .mop)
model_name = 'myPackage.myModel'
mo_file = 'myModelFile.mo'

# Compile the model and save the return argument, which is the file name of the FMU
my_fmu = compile_fmu(model_name, mo_file)

There is a compiler argument target that controls whether the model will be exported as an FMU-ME or FMU-CS.
The default is to compile an FMU-ME, so target does not need to be set in this example. The compiler argument
version specifies if the model should be exported as an FMU 1.0 or 2.0. As the default is to compile an FMU 2.0,
version does not need to be set either in this example. To compile an FMU 1.0, version should be set to '1.0'.

Once compilation has completed successfully, an FMU-ME 2.0 will have been created on the file system. The
FMU is essentially a compressed file archive containing the files created during compilation that are needed when
instantiating a model object. Return argument for compile_fmu is the file path of the FMU that has just been
created, this will be useful later when we want to create model objects. More about the FMU and loading models
can be found in Section 4.3.

In the above example, the model is compiled using default arguments and compiler options - the only arguments
set are the model class and file name. However, compile_fmu has several other named arguments which can be
modified. The different arguments, their default values and interpretation will be explained in Section 4.2.4.

4.2.2. Simple FMU-CS compilation example

The following steps compiles a model to an FMU-CS version 2.0:

1. Import the JModelica.org compiler function compile_fmu from the package pymodelica.

2. Specify the model and model file.

3. Set the argument target = 'cs'

4. Perform the compilation.

This is demonstrated in the following code example:

# Import the compiler function
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from pymodelica import compile_fmu

# Specify Modelica model and model file (.mo or .mop)
model_name = 'myPackage.myModel'
mo_file = 'myModelFile.mo'

# Compile the model and save the return argument, which is the file name of the FMU
my_fmu = compile_fmu(model_name, mo_file, target='cs')

In a Co-Simulation FMU, the integrator for solving the system is contained in the model. With an FMU-CS exported
with JModelica.org, two different solvers are supported: CVode and Explicit Euler.

4.2.3. Compiling from libraries

The model to be compiled might not be in a standalone .mo file, but rather part of a library consisting of a directory
structure containing several Modelica files. In this case, the file within the library that contains the model should
not be given on the command line. Instead, the entire library should to added to the list of libraries that the compiler
searches for classes in. This can be done in several ways (here library directory refers to the top directory of the
library, which should have the same name as the top package in the library):

• Adding the directory containing the library directory to the environment variable MODELICAPATH. The compiler
will search for classes in all libraries found in any of the directories in MODELICAPATH. In this case the file_name
argument of the compilation function can be omitted, assuming no additional Modelica files are needed.

• Giving the path to the library directory in the file_name argument of the compilation function. This allows
adding a specific library to the search list (as opposed to adding all libraries in a specific directory).

By default, the script starting a JModelica.org Python shell sets the MODELICAPATH to the directory containing the
version of the Modelica Standard Library (MSL) that is included in the installation. Thus, all classes in the MSL
are available without any need to specify its location.

The Python code example below demonstrates these methods:

# Import the compiler function
from pymodelica import compile_fmu

# Compile an example model from the MSL
fmu1 = compile_fmu('Modelica.Mechanics.Rotational.Examples.First')

# Compile a model from the library MyLibrary, located in C:\MyLibs
fmu2 = compile_fmu('MyLibrary.MyModel', 'C:/MyLibs/MyLibrary')

4.2.4. Compiler settings

The compiler function arguments can be listed with the interactive help in Python. The arguments are explained
in the corresponding Python docstring which is visualized with the interactive help. This is demonstrated for
compile_fmu below. The docstring for any other Python function for can be displayed in the same way.
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4.2.4.1. compile_fmu arguments

The compile_fmu arguments can be listed with the interactive help.

# Display the docstring for compile_fmu with the Python command 'help'
from pymodelica import compile_fmu
help(compile_fmu)
Help on function compile_fmu in module pymodelica.compiler:

compile_fmu(class_name, file_name=[], compiler='auto', target='me', version='2.0', 
            compiler_options={}, compile_to='.', compiler_log_level='warning', 
            separate_process=True, jvm_args='')
Compile a Modelica model to an FMU.

A model class name must be passed, all other arguments have default values.
The different scenarios are:

* Only class_name is passed:
    - Class is assumed to be in MODELICAPATH.

* class_name and file_name is passed:
    - file_name can be a single path as a string or a list of paths
      (strings). The paths can be file or library paths.
    - Default compiler setting is 'auto' which means that the appropriate
      compiler will be selected based on model file ending, i.e.
      ModelicaCompiler if a .mo file and OptimicaCompiler if a .mop file is
      found in file_name list.

The compiler target is 'me' by default which means that the shared
file contains the FMI for Model Exchange API. Setting this parameter to
'cs' will generate an FMU containing the FMI for Co-Simulation API.

Parameters::

    class_name --
        The name of the model class.

    file_name --
        A path (string) or paths (list of strings) to model files and/or
        libraries.
        Default: Empty list.

    compiler --
        The compiler used to compile the model. The different options are:
          - 'auto': the compiler is selected automatically depending on
             file ending
          - 'modelica': the ModelicaCompiler is used
          - 'optimica': the OptimicaCompiler is used
        Default: 'auto'

    target --
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        Compiler target. Possible values are 'me', 'cs' or 'me+cs'.
        Default: 'me'

    version --
        The FMI version. Valid options are '1.0' and '2.0'.
        Default: '2.0'

    compiler_options --
        Options for the compiler.
        Default: Empty dict.

    compile_to --
        Specify target file or directory. If file, any intermediate directories 
        will be created if they don't exist. If directory, the path given must 
        exist.
        Default: Current directory.

    compiler_log_level --
        Set the logging for the compiler. Takes a comma separated list with
        log outputs. Log outputs start with a flag :'warning'/'w',
        'error'/'e', 'info'/'i' or 'debug'/'d'. The log can be written to file
        by appended flag with a colon and file name.
        Default: 'warning'

    separate_process --
        Run the compilation of the model in a separate process.
        Checks the environment variables (in this order):
            1. SEPARATE_PROCESS_JVM
            2. JAVA_HOME
        to locate the Java installation to use.
        For example (on Windows) this could be:
            SEPARATE_PROCESS_JVM = C:\Program Files\Java\jdk1.6.0_37
        Default: True

    jvm_args --
        String of arguments to be passed to the JVM when compiling in a
        separate process.
        Default: Empty string

Returns::

    A compilation result, represents the name of the FMU which has been
    created and a list of warnings that was raised.

4.2.4.2. Compiler options

Compiler options can be modified using the compile_fmu argument compiler_options. This is shown in the
example below.

# Compile with the compiler option 'enable_variable_scaling' set to True
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# Import the compiler function
from pymodelica import compile_fmu
 
# Specify model and model file
model_name = 'myPackage.myModel'
mo_file = 'myModelFile.mo'

# Compile
my_fmu = compile_fmu(model_name, mo_file,
 compiler_options={"enable_variable_scaling":True})

There are four types of options: string, real, integer and boolean. The complete list of options can be found
in Appendix A.

4.3. Loading models

Compiled models, FMUs, are loaded in the JModelica.org Python interface with the FMUModel(ME/CS) (1/2)
class from the pyfmi module, while optimization problems for the CasADi-based optimization are transferred
directly into the OptimizationProblem class from the pyjmi module . This will be demonstrated in Section 4.3.1
and Section 4.3.2.

The model classes contain many methods with which models can be manipulated after instantiation. Among the
most important methods are initialize and simulate, which are used when simulating. These are explained in
Chapter 5 and Chapter 6. For more information on how to use the OptimizationProblem for optimization purposes,
see Chapter 6. The more basic methods for variable and parameter manipulation are explained in Section 4.4.

4.3.1. Loading an FMU

An FMU file can be loaded in JModelica.org with the method load_fmu in the pyfmi module. The following short
example demonstrates how to do this in a Python shell or script.

# Import load_fmu from pyfmi
from pyfmi import load_fmu
myModel = load_fmu('myFMU.fmu')

load_fmu returns a class instance of the appropriate FMU type which then can be used to set parameters and used
for simulations.

4.3.2. Transferring an Optimization Problem

An optimization problem can be transferred directly from the compiler in JModelica.org into the class Optimiza-
tionProblem in the pyjmi module. The transfer is similar to the combined steps of compiling and then loading an
FMU. The following short example demonstrates how to do this in a Python shell or script.
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# Import transfer_optimization_problem
from pyjmi import transfer_optimization_problem

# Specify Modelica model and model file
model_name = 'myPackage.myModel'
mo_file = 'myModelFile.mo'

# Compile the model, return argument is an OptimizationProblem
myModel = transfer_optimization_problem(model_name, mo_file)

4.4. Changing model parameters
Model parameters can be altered with methods in the model classes once the model has been loaded. Some short
examples in Section 4.4.1 will demonstrate this.

4.4.1. Setting and getting parameters

The model parameters can be accessed via the model class interfaces. It is possible to set and get one specific
parameter at a time or a whole list of parameters.

The following code example demonstrates how to get and set a specific parameter using an example FMU model
from the pyjmi.examples package.

# Compile and load the model
from pymodelica import compile_fmu
from pyfmi import load_fmu
my_fmu = compile_fmu('RLC_Circuit','RLC_Circuit.mo')
rlc_circuit = load_fmu(my_fmu)

# Get the value of the parameter 'resistor.R' and save the result in a variable
 'resistor_r'
resistor_r = rlc_circuit.get('resistor.R')

# Give 'resistor.R' a new value
resistor_r = 2.0
rlc_circuit.set('resistor.R', resistor_r)

The following example demonstrates how to get and set a list of parameters using the same example model as
above. The model is assumed to already be compiled and loaded.

# Create a list of parameters, get and save the corresponding values in a variable 'values'
vars = ['resistor.R', 'resistor.v', 'capacitor.C', 'capacitor.v']
values = rlc_circuit.get(vars)

# Change some of the values
values[0] = 3.0
values[3] = 1.0
rlc_circuit.set(vars, values)
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4.5. Debugging models
The JModelica.org compilers can generate debugging information in order to facilitate localization of errors. There
are three mechanisms for generating such diagnostics: dumping of debug information to the system output, gen-
eration of HTML code that can be viewed with a standard web browser or logs in XML format from the non-
linear solver.

4.5.1. Compiler logging

The amount of logging that should be output by the compiler can be set with the argument compiler_log_level
to the compile-functions (compile_fmu and also transfer_optimization_problem). The available log levels are
'warning' (default), 'error', 'info','verbose' and 'debug' which can also be written as 'w', 'e', 'i','v'
and 'd' respectively. The following example demonstrates setting the log level to 'info':

# Set compiler log level to 'info'
compile_fmu('myModel', 'myModels.mo', compiler_log_level='info')

The log is printed to the standard output, normally the terminal window from which the compiler is invoked.

The log can also be written to file by appending the log level flag with a colon and file name. This is shown in
the following example:

# Set compiler log level to info and write the log to a file log.txt
compile_fmu('myModel', 'myModels.mo', compiler_log_level='i:log.txt')

It is possible to specify several log outputs by specifying a comma separated list. The following example writes
log warnings and errors (log level 'warning' or 'w') to the standard output and a more verbose logging to file
(log level 'info' or 'i'):

# Write warnings and errors to standard output and the log with log level info to log.txt
compile_fmu('myModel', 'myModels.mo', compiler_log_level= 'w,i:log.txt')

4.5.2. Runtime logging

4.5.2.1. Setting log level

Many events that occur inside of an FMU can generate log messages. The log messages from the runtime are saved
in a file with the default name <FMU name>_log.txt. A log file name can also be supplied when loading an FMU,
this is shown in the example below:

# Load model
model = load_fmu(fmu_name, log_file_name='MyLog.txt')

How much information that is output to the log file can be controlled by setting the log_level argument
to load_fmu. log_level can be any number between 0 and 7, where 0 means no logging and 7 means the
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most verbose logging. The log level can also be changed after the FMU has been loaded with the function
set_log_level(level). Setting the log_level is demonstrated in the following example:

# Load model and set log level to 5
model = load_fmu(fmu_name, log_level=5)

# Change log level to 7
model.set_log_level(7)

If the loaded FMU is an FMU exported by JModelica.org, the amount of logging produced by the FMU can also
be altered. This is done by setting the parameter _log_level in the FMU. This log level ranges from 0 to 7 where
0 represents the least verbose logging and 7 the most verbose. The following example demonstrates this:

# Load model (with default log level)
model = load_fmu(fmu_name)

# Set amount of logging produced to the most verbose
model.set('_log_level', 6)

# Change log level to 7 to be able to see everything that is being produced
model.set_log_level(7)

4.5.2.2. Interpreting logs from FMUs produced by JModelica.org

In JModelica.org, information is logged in XML format, which ends up mixed with FMI Library output in the re-
sulting log file. Example: (the following examples are based on the example pyjmi.examples.logger_example.)

  1  ...
  2 FMIL: module = FMICAPI, log level = 5: Calling fmiInitialize
  3 FMIL: module = Model, log level = 4: [INFO][FMU status:OK] <EquationSolve>Model
 equations evaluation invoked at<value name="t">        0.0000000000000000E+00</value>
  4 FMIL: module = Model, log level = 4: [INFO][FMU status:OK]  
 <BlockEventIterations>Starting block (local) event iteration at<value name="t">       
 0.0000000000000000E+00</value>in<value name="block">0</value>
  5 FMIL: module = Model, log level = 4: [INFO][FMU status:OK]     <vector name="ivs">     
   0.0000000000000000E+00,         0.0000000000000000E+00,         0.0000000000000000E+00</
vector>
  6 FMIL: module = Model, log level = 4: [INFO][FMU status:OK]     <vector name="switches">
        0.0000000000000000E+00,         0.0000000000000000E+00,         0.0000000000000000E
+00,         0.0000000000000000E+00</vector>
  7 FMIL: module = Model, log level = 4: [INFO][FMU status:OK]     <vector
 name="booleans"></vector>
  8 FMIL: module = Model, log level = 4: [INFO][FMU status:OK]     <BlockIteration>Local
 iteration<value name="iter">1</value>at<value name="t">        0.0000000000000000E+00</
value>
  9 FMIL: module = Model, log level = 4: [INFO][FMU status:OK]      
 <JacobianUpdated><value name="block">0</value>
 10 FMIL: module = Model, log level = 4: [INFO][FMU status:OK]         <matrix
 name="jacobian">
 11 FMIL: module = Model, log level = 4: [INFO][FMU status:OK]                 
 -1.0000000000000000E+00,         4.0000000000000000E+00,         0.0000000000000000E+00;
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 12 FMIL: module = Model, log level = 4: [INFO][FMU status:OK]                 
 -1.0000000000000000E+00,        -1.0000000000000000E+00,        -1.0000000000000000E+00;
 13 FMIL: module = Model, log level = 4: [INFO][FMU status:OK]                 
 -1.0000000000000000E+00,         1.0000000000000000E+00,        -1.0000000000000000E+00;
 14 FMIL: module = Model, log level = 4: [INFO][FMU status:OK]         </matrix>
 15 FMIL: module = Model, log level = 4: [INFO][FMU status:OK]       </JacobianUpdated>
 16 ...

The log can be inspected manually, using general purpose XML tools, or parsed using the tools in pyjmi.log. A
pure XML file that can be read by XML tools can be extracted with

# Extract the log file XML contents into a pure XML file
pyjmi.log.extract_jmi_log(dest_xml_file_name, log_file_name)

The XML contents in the log file can also be parsed directly:

# Parse the entire XML log
log = pyjmi.log.parse_jmi_log(log_file_name)

log will correspond to the top level log node, containing all other nodes. Log nodes have two kinds of children:
named (with a name attribute in the XML file) and unnamed (without).

• Named children are accessed by indexing with a string: node['t'], or simply dot notation: node.t.

• Unnamed children are accessed as a list node.nodes, or by iterating over the node.

There is also a convenience function gather_solves to extract common information about equation solves in the
log. This function collects nodes of certain types from the log and annotates some of them with additional named
children. The following example is from pyjmi.examples.logger_example:

  1 # Parse the entire XML log
  2 log = pyjmi.log.parse_jmi_log(log_file_name)
  3 # Gather information pertaining to equation solves
  4 solves = pyjmi.log.gather_solves(log)
  5 
  6 print
  7 print 'Number of solver invocations:',                      len(solves)
  8 print 'Time of first solve:',                               solves[0].t
  9 print 'Number of block solves in first solver invocation:', len(solves[0].block_solves)
 10 print 'Names of iteration variables in first block solve:',
 solves[0].block_solves[0].variables
 11 print 'Min bounds in first block solve:',                  
 solves[0].block_solves[0].min
 12 print 'Max bounds in first block solve:',                  
 solves[0].block_solves[0].max
 13 print 'Initial residual scaling in first block solve:',    
 solves[0].block_solves[0].initial_residual_scaling
 14 print 'Number of iterations in first block solve:',        
 len(solves[0].block_solves[0].iterations)
 15 print
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 16 print 'First iteration in first block solve: '
 17 print '  Iteration variables:',             
 solves[0].block_solves[0].iterations[0].ivs
 18 print '  Scaled residuals:',                
 solves[0].block_solves[0].iterations[0].residuals
 19 print '  Jacobian:\n',                      
 solves[0].block_solves[0].iterations[0].jacobian
 20 print '  Jacobian updated in iteration:',   
 solves[0].block_solves[0].iterations[0].jacobian_updated
 21 print '  Residual scaling factors:',        
 solves[0].block_solves[0].iterations[0].residual_scaling
 22 print '  Residual scaling factors_updated:',
 solves[0].block_solves[0].iterations[0].residual_scaling_updated
 23 print '  Scaled residual norm:',            
 solves[0].block_solves[0].iterations[0].scaled_residual_norm

4.5.3. Compiler Diagnostic Output

By setting the compiler option generate_html_diagnostics to true, a number of HTML pages contain-
ing diagnostics are generated. The HTML files are generated in the directory Model_Name_diagnostics,
where Model_Name is the name of the compiled model. As compared to the diagnostics generated by the
compiler_log_level argument, the HTML diagnostics contains only the most important information, but it also
provides a better overview. Opening the file Model_Name_diagnostics/index.html in a web browser, results in a
page with information on number of variables, parameters and equations as well as other statistics about the model.

Note that some of the entries in Model_Name_diagnostics/index.html, including Problems, Flattened model,
Connection sets, Transformed model, Alias sets, BLT diagnostics table, BLT for DAE System and BLT
for Initialization System are links to sub pages containing additional information. For example, the BLT
for DAE System page contains information about in which order the model equations are evaluated and which
blocks are present after compilation.

Additionally there is a table view of the BLT. It can be found on the BLT diagnostics table page. It provides
a graphical representation of the BLT. The generation of the BLT diagnostics table is limited to 300 equations
due to the complexity of the graph.
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Chapter 5. Simulation of FMUs in
Python
5.1. Introduction
JModelica.org supports simulation of models described in the Modelica language and models following the FMI
standard. The simulation environment uses Assimulo as standard which is a standalone Python package for solving
ordinary differential and differential algebraic equations. Loading and simulation of FMUs has additionally been
made available as a separate Python package, PyFMI.

This chapter describes how to load and simulate FMUs using explanatory examples.

5.2. A first example
This example focuses on how to use JModelica.org's simulation functionality in the most basic way. The model
which is to be simulated is the Van der Pol problem described in the code below. The model is also available from
the examples in JModelica.org in the file VDP.mop (located in install/Python/pyjmi/examples/files).

model VDP
    // State start values
    parameter Real x1_0 = 0;
    parameter Real x2_0 = 1;

    // The states
    Real x1(start = x1_0);
    Real x2(start = x2_0);

    // The control signal
    input Real u;

  equation
    der(x1) = (1 - x2^2) * x1 - x2 + u;
    der(x2) = x1;
end VDP;

Create a new file in your working directory called VDP.mo and save the model.

Next, create a Python script file and write (or copy paste) the commands for compiling and loading a model:

# Import the function for compilation of models and the load_fmu method
from pymodelica import compile_fmu
from pyfmi import load_fmu

http://www.jmodelica.org/assimulo
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# Import the plotting library
import matplotlib.pyplot as plt

Next, we compile and load the model:

# Compile model
fmu_name = compile_fmu("VDP","VDP.mo")

# Load model
vdp = load_fmu(fmu_name)

The function compile_fmu compiles the model into a binary, which is then loaded when the vdp object is created.
This object represents the compiled model, an FMU, and is used to invoke the simulation algorithm (for more
information about model compilation and options, see Chapter 4):

res = vdp.simulate(final_time=10)

In this case we use the default simulation algorithm together with default options, except for the final time which
we set to 10. The result object can now be used to access the simulation result in a dictionary-like way:

x1 = res['x1']
x2 = res['x2']
t  = res['time']

The variable trajectories are returned as NumPy arrays and can be used for further analysis of the simulation result
or for visualization:

plt.figure(1)
plt.plot(t, x1, t, x2)
plt.legend(('x1','x2'))
plt.title('Van der Pol oscillator.')
plt.ylabel('Angle (rad)')
plt.xlabel('Time (s)')
plt.show()

In Figure 5.1 the simulation result is shown.
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Figure 5.1 Simulation result of the Van der Pol oscillator.

5.3. Simulation of Models
Simulation of models in JModelica.org is performed via the simulate method of a model object. The FMU model
objects in JModelica.org are located in PyFMI:

• FMUModelME1 / FMUModelME2

• FMUModelCS1 / FMUModelCS2

FMUModelME* / FMUModelCS* also supports compiled models from other simulation/modelling tools that follow
the FMI standard (extension .fmu) (either Model exchange FMUs or Co-Simulation FMUs). Both FMI version 1.0
and FMI version 2.0 are supported. For more information about compiling a model in JModelica.org see Chapter 4.

The simulation method is the preferred method for simulation of models and which by default is connected to the
Assimulo simulation package but can also be connected to other simulation platforms. The simulation method for
FMUModelME* / FMUModelCS* is defined as:
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class FMUModel(ME/CS)(...)
    ...
    def simulate(self,
             start_time=0.0,
             final_time=1.0,
             input=(),
             algorithm='AssimuloFMIAlg', 
             options={}):

And used in the following way:

res = FMUModel(ME/CS)*.simulate() # Using default values

For FMUModelCS*, the FMU contains the solver and is thus used (although using the same interface).

5.3.1. Convenience method, load_fmu

Since there are different FMI specifications for Model exchange and Co-Simulation and also differences between
versions, a convenience method, load_fmu has been created. This method is the preferred access point for loading
an FMU and will return an instance of the appropriate underlying FMUModel(CS/ME)* class.

model = load_fmu("myFMU.fmu")

5.3.2. Arguments

The start and final time attributes are simply the time where the solver should start the integration and stop the
integration. The input however is a bit more complex and is described in more detail in the following section. The
algorithm attribute is where the different simulation package can be specified, however currently only a connection
to Assimulo is supported and connected through the algorithm AssimuloFMIAlg for FMUModelME*.

5.3.2.1. Input

The input argument defines the input trajectories to the model and should be a 2-tuple consisting of the names of
the input variables and their trajectories. The names can be either a list of strings, or a single string for setting only
a single input trajectory. The trajectories can be given as either a data matrix or a function. If a data matrix is used,
it should contain a time vector as the first column, and then one column for each input, in the order of the list of
names. If instead the second argument is a function it should be defined to take the time as input and return an
array with the values of the inputs, in the order of the list of names.

For example, consider that we have a model with an input variable u1 and that the model should be driven by
a sine wave as input. We are interested in the interval 0 to 10. We will look at both using a data matrix and at
using a function.

import numpy as N
t = N.linspace(0.,10.,100)            # Create one hundred evenly spaced points
u = N.sin(t)                          # Create the input vector
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u_traj = N.transpose(N.vstack((t,u))) # Create the data matrix and transpose 
                                      # it to the correct form

The above code have created the data matrix that we are interested in giving to the model as input, we just need
to connect the data to a specific input variable, u1:

input_object = ('u1', u_traj)

Now we are ready to simulate using the input and simulate 10 seconds.

res = model.simulate(final_time=10, input=input_object)

If we on the other hand would have two input variables, u1 and u2 the script would instead look like:

import numpy as N
t = N.linspace(0.,10.,100)                     # Create one hundred evenly spaced points
u1 = N.sin(t)                                  # Create the first input vector
u2 = N.cos(t)                                  # Create the second input vector
u_traj = N.transpose(N.vstack((t,u1,u2)))      # Create the data matrix and 
                                               # transpose it to the correct form
input_object = (['u1','u2'], u_traj)
res = model.simulate(final_time=10, input=input_object)

Note that the variables are now a List of variables.

If we were to do the same example using input functions instead, the code would look like for the single input case:

input_object = ('u1', N.sin)

and for the double input case:

def input_function(t):
    return N.array([N.sin(t),N.cos(t)])

input_object = (['u1','u2'],input_function)

5.3.2.2. Options for Model Exchange FMUs

The options attribute are where options to the specified algorithm are stored, and are preferably used together with:

opts = FMUModelME*.simulate_options()

which returns the default options for the default algorithm. Information about the available options can be viewed
by typing help on the opts variable:

>>> help(opts)
   Options for the solving the FMU using the Assimulo simulation package.
   Currently, the only solver in the Assimulo package that fully supports
   simulation of FMUs is the solver CVode.
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   ...

In Table 5.1 the general options for the AssimuloFMIAlg algorithm are described while in Table 5.2 a selection of
the different solver arguments for the ODE solver CVode is shown. More information regarding the solver options
can be found here, http://www.jmodelica.org/assimulo.

Table 5.1 General options for AssimuloFMIAlg.

Option Default Description

solver "CVode" Specifies the simulation method that is to be used. Cur-
rently supported solvers are, CVode, Radau5ODE,
RungeKutta34, Dopri5, RodasODE, LSODAR, Ex-
plicitEuler. The recommended solver is "CVode".

ncp 0 Number of communication points. If ncp is zero, the
solver will return the internal steps taken.

initialize True If set to True, the initializing algorithm defined in the
FMU model is invoked, otherwise it is assumed the us-
er have manually invoked model.initialize()

write_scaled_result False Set this parameter to True to write the result to file
without taking scaling into account. If the value of
scaled is False, then the variable scaling factors of the
model are used to reproduced the unscaled variable
values.

result_file_name Empty string (default gen-
erated file name will be
used)

Specifies the name of the file where the simulation re-
sult is written. Setting this option to an empty string re-
sults in a default file name that is based on the name of
the model class.

filter None A filter for choosing which variables to actually store
result for. The syntax can be found here. An example is
filter = "*der" , store all variables ending with 'der' and
filter = ["*der*", "summary*"], store all variables with
"der" in the name and all variables starting with "sum-
mary".

result_handling "file" Specifies how the result should be handled. Either
stored to file or stored in memory. One can also use a
custom handler. Available options: "file", "memory",
"custom"

Lets look at an example, consider that you want to simulate an FMU model using the solver CVode together with
changing the discretization method (discr) from BDF to Adams:

...

https://en.wikipedia.org/wiki/Glob_%28programming%29
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opts = model.simulate_options()          # Retrieve the default options
#opts['solver'] = 'CVode'                # Not necessary, default solver is CVode
opts['CVode_options']['discr'] = 'Adams' # Change from using BDF to Adams
opts['initialize'] = False               # Don't initialize the model
model.simulate(options=opts)             # Pass in the options to simulate and simulate

It should also be noted from the above example that the options regarding a specific solver, say the tolerances for
CVode, should be stored in a double dictionary where the first is named after the solver concatenated with _options:

opts['CVode_options']['atol'] = 1.0e-6   # Options specific for CVode

For the general options, as changing the solver, they are accessed as a single dictionary:

opts['solver'] = 'CVode'  # Changing the solver
opts['ncp'] = 1000        # Changing the number of communication points.

Table 5.2 Selection of solver arguments for CVode

Option Default Description

discr 'BDF' The discretization method. Can be ei-
ther 'BDF' or 'Adams'

iter 'Newton' The iteration method. Can be either
'Newton' or 'FixedPoint'.

maxord 5 The maximum order used. Maximum
for 'BDF' is 5 while for the 'Adams'
method the maximum is 12

maxh Inf Maximum step-size. Positive float.

atol rtol*0.01*(nominal values of the
continuous states)

Absolute Tolerance. Can be an ar-
ray of floats where each value corre-
sponds to the absolute tolerance for
the corresponding variable. Can also
be a single positive float.

rtol 1.0e-4 The relative tolerance. The relative
tolerance are retrieved from the 'de-
fault experiment' section in the XML-
file and if not found are set to 1.0e-4

5.3.2.3. Options for Co-Simulation FMUs

The options attribute are where options to the specified algorithm are stored, and are preferably used together with:

opts = FMUModelCS*.simulate_options()

which returns the default options for the default algorithm. Information about the available options can be viewed
by typing help on the opts variable:
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>>> help(opts)
   Options for the solving the CS FMU.
   
   ...

In Table 5.3 the general options for the FMICSAlg algorithm are described.

Table 5.3 General options for FMICSAlg.

Option Default Description

ncp 500 Number of communication points.

initialize True If set to True, the initializing al-
gorithm defined in the FMU mod-
el is invoked, otherwise it is as-
sumed the user have manually in-
voked model.initialize()

write_scaled_result False Set this parameter to True to write the
result to file without taking scaling in-
to account. If the value of scaled is
False, then the variable scaling factors
of the model are used to reproduced
the unscaled variable values.

result_file_name Empty string (default generated file
name will be used)

Specifies the name of the file where
the simulation result is written. Set-
ting this option to an empty string
results in a default file name that is
based on the name of the model class.

filter None A filter for choosing which vari-
ables to actually store result
for. The syntax can be found
in http://en.wikipedia.org/wiki/Glob_
%28programming%29 . An example
is filter = "*der" , store all variables
ending with 'der' and filter = ["*der*",
"summary*"], store all variables with
"der" in the name and all variables
starting with "summary".

result_handling "file" Specifies how the result should be
handled. Either stored to file or stored
in memory. One can also use a cus-
tom handler. Available options: "file",
"memory", "custom"

???
???
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5.3.3. Return argument

The return argument from the simulate method is an object derived from a common result object ResultBase in
algorithm_drivers.py with a few extra convenience methods for retrieving the result of a variable. The result
object can be accessed in the same way as a dictionary type in Python with the name of the variable as key.

res = model.simulate()
y = res['y']           # Return the result for the variable/parameter/constant y
dery = res['der(y)']   # Return the result for the variable/parameter/constant der(y)

This can be done for all the variables, parameters and constants defined in the model and is the preferred way of
retrieving the result. There are however some more options available in the result object, see Table 5.4.

Table 5.4 Result Object

Option Type Description

options Property Gets the options object that was used
during the simulation.

solver Property Gets the solver that was used during
the integration.

result_file Property Gets the name of the generated result
file.

is_variable(name) Method Returns True if the given name is a
time-varying variable.

data_matrix Property Gets the raw data matrix.

is_negated(name) Method Returns True if the given name is
negated in the result matrix.

get_column(name) Method Returns the column number in the da-
ta matrix which corresponds to the
given variable.

5.4. Examples
In the next sections, it will be shown how to use the JModelica.org platform for simulation of various FMUs.

The Python commands in these examples may be copied and pasted directly into a Python shell, in some cases
with minor modifications. Alternatively, they may be copied into a file, which also is the recommended way.

5.4.1. Simulation of a high-index model

Mechanical component-based models often result in high-index DAEs. In order to efficiently integrate such
models, Modelica tools typically employs an index reduction scheme, where some equations are differen-
tiated, and dummy derivatives are selected. In order to demonstrate this feature, we consider the model
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Modelica.Mechanics.Rotational.Examples.First from the Modelica Standard library, see Figure 5.2. The
model is of high index since there are two rotating inertias connected with a rigid gear.

Figure 5.2 Modelica.Mechanics.Rotational.First connection diagram

First create a Python script file and enter the usual imports:

import matplotlib.pyplot as plt
from pymodelica import compile_fmu
from pyfmi import load_fmu

Next, the model is compiled and loaded:

# Compile model
fmu_name = compile_fmu("Modelica.Mechanics.Rotational.Examples.First")

# Load model
model = load_fmu(fmu_name)

Notice that no file name, just an empty tuple, is provided to the function compile_fmu, since in this case the model
that is compiled resides in the Modelica Standard Library. In the compilation process, the index reduction algorithm
is invoked. Next, the model is simulated for 3 seconds:

# Load result file
res = model.simulate(final_time=3.)

Finally, the simulation results are retrieved and plotted:

w1 = res['inertia1.w']
w2 = res['inertia2.w']
w3 = res['inertia3.w']
tau = res['torque.tau']
t = res['time']

plt.figure(1)
plt.subplot(2,1,1)
plt.plot(t,w1,t,w2,t,w3)
plt.grid(True)
plt.legend(['inertia1.w','inertia2.w','inertia3.w'])
plt.subplot(2,1,2)
plt.plot(t,tau)
plt.grid(True)
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plt.legend(['tau'])
plt.xlabel('time [s]')
plt.show()

You should now see a plot as shown below.

Figure 5.3 Simulation result for Modelica.Mechanics.Rotational.Examples.First

5.4.2. Simulation and parameter sweeps

This example demonstrates how to run multiple simulations with different parameter values. Sweeping parameters
is a useful technique for analysing model sensitivity with respect to uncertainty in physical parameters or initial
conditions. Consider the following model of the Van der Pol oscillator:

  model VDP
    // State start values
    parameter Real x1_0 = 0;
    parameter Real x2_0 = 1;

    // The states
    Real x1(start = x1_0);
    Real x2(start = x2_0);

    // The control signal
    input Real u;

  equation
    der(x1) = (1 - x2^2) * x1 - x2 + u;
    der(x2) = x1;
  end VDP;
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Notice that the initial values of the states are parametrized by the parameters x1_0 and x2_0. Next, copy the
Modelica code above into a file VDP.mo and save it in your working directory. Also, create a Python script file and
name it vdp_pp.py. Start by copying the commands:

import numpy as N
import pylab as P
from pymodelica import compile_fmu
from pyfmi import load_fmu

into the Python file. Compile and load the model:

# Define model file name and class name
model_name = 'VDP'
mofile = 'VDP.mo'

# Compile model
fmu_name = compile_fmu(model_name,mofile)

Next, we define the initial conditions for which the parameter sweep will be done. The state x2 starts at 0, whereas
the initial condition for x1 is swept between -3 and 3:

# Define initial conditions
N_points = 11
x1_0 = N.linspace(-3.,3.,N_points)
x2_0 = N.zeros(N_points)

In order to visualize the results of the simulations, we open a plot window:

fig = P.figure()
P.clf()
P.hold(True)
P.xlabel('x1')
P.ylabel('x2')

The actual parameter sweep is done by looping over the initial condition vectors and in each iteration set the
parameter values into the model, simulate and plot:

for i in range(N_points):
    # Load model
    vdp = load_fmu(fmu_name)  
    # Set initial conditions in model
    vdp.set('x1_0',x1_0[i])
    vdp.set('x2_0',x2_0[i])
    # Simulate 
    res = vdp.simulate(final_time=20)
    # Get simulation result
    x1=res['x1']
    x2=res['x2']
    # Plot simulation result in phase plane plot
    P.plot(x1, x2,'b')
P.grid()
P.show()
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You should now see a plot similar to that in Figure 5.4.

Figure 5.4 Simulation result-phase plane

5.4.3. Simulation of an Engine model with inputs

In this example the model is larger than the previous. It is a slightly modified version of the model
EngineV6_analytic from the Multibody library in the Modelica Standard Library. The modification consists of a
replaced load with a user defined load. This has been done in order to be able to demonstrate how inputs are set
from a Python script. In Figure 5.5 the model is shown.

Figure 5.5 Overview of the Engine model
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The Modelica code for the model is shown below, copy and save the code in a file named EngineV6.mo.

model EngineV6_analytic_with_input
  output Real engineSpeed_rpm= Modelica.SIunits.Conversions.to_rpm(load.w);
  output Real engineTorque = filter.u;
  output Real filteredEngineTorque = filter.y;
  
  input Real u;
  
  import Modelica.Mechanics.*;

  inner MultiBody.World world;
  MultiBody.Examples.Loops.Utilities.EngineV6_analytic engine(redeclare 
      model Cylinder = MultiBody.Examples.Loops.Utilities.Cylinder_analytic_CAD);
      
  Rotational.Components.Inertia load(
    phi(start=0,fixed=true), w(start=10,fixed=true),
    stateSelect=StateSelect.always,J=1);
  Rotational.Sensors.TorqueSensor torqueSensor;
  Rotational.Sources.Torque torque;
  
  Modelica.Blocks.Continuous.CriticalDamping filter(
    n=2,initType=Modelica.Blocks.Types.Init.SteadyState,f=5);

equation 
  torque.tau = u;
  
  connect(world.frame_b, engine.frame_a);
  connect(torque.flange, load.flange_b);
  connect(torqueSensor.flange_a, engine.flange_b);
  connect(torqueSensor.flange_b, load.flange_a);
  connect(torqueSensor.tau, filter.u);
  annotation (experiment(StopTime=1.01));

end EngineV6_analytic_with_input;

Now that the model has been defined, we create our Python script which will compile, simulate and visualize the
result for us. Create a new text-file and start by copying the below commands into the file. The code will import
the necessary methods and packages into Python.

from pymodelica import compile_fmu
from pyfmi import load_fmu
import pylab as P

Compiling the model is performed by invoking the compile_fmu method where the first argument is the name of
the model and the second argument is where the model is located (which file). The method will create an FMU in
the current directory and in order to simulate the FMU, we need to additionally load the created FMU into Python.
This is done with the load_fmu method which takes the name of the FMU as input.

name = compile_fmu("EngineV6_analytic_with_input", "EngineV6.mo")
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model = load_fmu(name)

So, now that we have compiled the model and loaded it into Python we are almost ready to simulate the model.
First however, we retrieve the simulation options and specify how many result points we want to receive after a
simulation.

opts = model.simulate_options()
opts["ncp"] = 1000 #Specify that 1000 output points should be returned

A simulation is finally performed using the simulate method on the model and as we have changed the options,
we need to additionally provide these options to the simulate method.

res = model.simulate(options=opts)

The simulation result is returned and stored into the res object. Result for a trajectory is easily retrieved using a
Python dictionary syntax. Below is the visualization code for viewing the engine torque. One could instead use the
Plot GUI for the visualization as the result are stored in a file in the current directory.

P.plot(res["time"],res["filteredEngineTorque"], label="Filtered Engine Torque")
P.show()

In Figure 5.6 the trajectories are shown for he engine torque and the engine speed utilizing subplots from Matplotlib.

Figure 5.6 Resulting trajectories for the engine model.
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Above we have simulated the engine model and looked at the result, we have not however specified any load as
input. Remember that the model we are looking at has a user specified load. Now we will create a Python function
that will act as our input. We create a function that depends on the time and returns the value for use as input.

def input_func(t):
    return -100.0*t

In order to use this input in the simulation, simply provide the name of the input variable and the function as the
input argument to the simulate method, see below.

res = model.simulate(options=opts, input=("u",input_func))

Simulate the model again and look at the result and the impact of the input.

Large models contain an enormous amount of variables and by default, all of these variables are stored in the result.
Storing the result takes time and for large models the saving of the result may be responsible for the majority of
the overall simulation time. Not all variables may be of interest, for example in our case, we are only interested
in two variables so storing the other variables are not necessary. In the options dictionary there is a filter option
which allows to specify which variables should be stored, so in our case, try the below filter and look at the impact
on the simulation time.

opts["filter"] = ["filteredEngineTorque", "engineSpeed_rpm"]

5.4.4. Simulation using the native FMI interface

This example shows how to use the native JModelica.org FMI interface for simulation of an FMU of version 2.0 for
Model Exchange. For the procedure with version 1.0, refer to  Functional Mock-up Interface for Model Exchange
version 1.0.

The FMU that is to be simulated is the bouncing ball example from Qtronics FMU SDK (http://www.qtronic.de/
en/fmusdk.html). This example is written similar to the example in the documentation of the 'Functional Mock-
up Interface for Model Exchange' version 2.0 (https://www.fmi-standard.org/). The bouncing ball model is to be
simulated using the explicit Euler method with event detection.

The example can also be found in the Python examples catalog in the JModelica.org platform. There you can also
find a similar example for simulation with a version 1.0 Model Exchange FMU.

The bouncing ball consists of two equations,

and one event function (also commonly called root function),
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Where the ball bounces and lose some of its energy according to,

Here, h is the height, g the gravity, v the velocity and e a dimensionless parameter. The starting values are, h=1
and v=0 and for the parameters, e=0.7 and g = 9.81.

5.4.4.1. Implementation

Start by importing the necessary modules,

import numpy as N 
import pylab as P                  # Used for plotting
from pyfmi.fmi import load_fmu  # Used for loading the FMU

Next, the FMU is to be loaded and initialized

# Load the FMU by specifying the fmu together with the path.
bouncing_fmu = load_fmu('/path/to/FMU/bouncingBall.fmu')

Tstart = 0.5                 # The start time.
Tend   = 3.0                 # The final simulation time.  
# Initialize the model. Also sets all the start attributes defined in the 
# XML file.
bouncing_fmu.setup_experiment(start_time = Tstart) # Set the start time to Tstart
bouncing_fmu.enter_initialization_mode()
bouncing_fmu.exit_initialization_mode()

The first line loads the FMU and connects the C-functions of the model to Python together with loading the infor-
mation from the XML-file. The start time also needs to be specified by providing the argument start_time to
setup_experiment. The model is also initialized, which must be done before the simulation is started.

Note that if the start time is not specified, FMUModelME2 tries to find the starting time in the XML-file structure
'default experiment' and if successful starts the simulation from that time. Also if the XML-file does not contain
any information about the default experiment the simulation is started from time zero.

Next step is to do the event iteration and thereafter enter continuous time mode.

eInfo = bouncing_fmu.get_event_info()
eInfo.newDiscreteStatesNeeded = True
#Event iteration
while eInfo.newDiscreteStatesNeeded == True:
    bouncing_fmu.enter_event_mode()
    bouncing_fmu.event_update()
    eInfo = bouncing_fmu.get_event_info()
    
bouncing_fmu.enter_continuous_time_mode()
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Then information about the first step is retrieved and stored for later use.

# Get Continuous States
x = bouncing_fmu.continuous_states
# Get the Nominal Values
x_nominal = bouncing_fmu.nominal_continuous_states
# Get the Event Indicators
event_ind = bouncing_fmu.get_event_indicators()
        
# Values for the solution
# Retrieve the valureferences for the values 'h' and 'v'
vref  = [bouncing_fmu.get_variable_valueref('h')] + \
        [bouncing_fmu.get_variable_valueref('v')]       
t_sol = [Tstart]
sol = [bouncing_fmu.get_real(vref)]

Here the continuous states together with the nominal values and the event indicators are stored to be used in the
integration loop. In our case the nominal values are all equal to one. This information is available in the XML-
file. We also create lists which are used for storing the result. The final step before the integration is started is to
define the step-size.

time = Tstart
Tnext = Tend   # Used for time events
dt = 0.01      # Step-size

We are now ready to create our main integration loop where the solution is advanced using the explicit Euler
method.

# Main integration loop.
while time < Tend and not bouncing_fmu.get_event_info().terminateSimulation:
    #Compute the derivative of the previous step f(x(n), t(n))
    dx = bouncing_fmu.get_derivatives()
    
    # Advance
    h = min(dt, Tnext-time)
    time = time + h
            
    # Set the time
    bouncing_fmu.time = time
            
    # Set the inputs at the current time (if any)
    # bouncing_fmu.set_real,set_integer,set_boolean,set_string (valueref, values)
            
    # Set the states at t = time (Perform the step using x(n+1)=x(n)+hf(x(n), t(n))
    x = x + h*dx 
    bouncing_fmu.continuous_states = x

This is the integration loop for advancing the solution one step. The loop continues until the final time has been
reached or if the FMU reported that the simulation is to be terminated. At the start of the loop the derivatives of the
continuous states are retrieved and then the simulation time is incremented by the step-size and set to the model.
It could also be the case that the model depends on inputs which can be set using the set_(real/...) methods.
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Note that only variables defined in the XML-file to be inputs can be set using the set_(real/...) methods
according to the FMI specification.

The step is performed by calculating the new states (x+h*dx) and setting the values into the model. As our model,
the bouncing ball also consist of event functions which needs to be monitored during the simulation, we have to
check the indicators which is done below.

    # Get the event indicators at t = time
    event_ind_new = bouncing_fmu.get_event_indicators()
            
    # Inform the model about an accepted step and check for step events
    step_event = bouncing_fmu.completed_integrator_step()
            
    # Check for time and state events
    time_event  = abs(time-Tnext) <= 1.e-10
    state_event = True if True in ((event_ind_new>0.0) != (event_ind>0.0)) else False

Events can be, time, state or step events. The time events are checked by continuously monitoring the current time
and the next time event (Tnext). State events are checked against sign changes of the event functions. Step events
are monitored in the FMU, in the method completed_integrator_step() and return True if any event handling
is necessary. If an event has occurred, it needs to be handled, see below.

    # Event handling
    if step_event or time_event or state_event:
        bouncing_fmu.enter_event_mode()
        eInfo = bouncing_fmu.get_event_info()
        eInfo.newDiscreteStatesNeeded = True
                
        # Event iteration
        while eInfo.newDiscreteStatesNeeded:
            bouncing_fmu.event_update('0')       # Stops at each event iteration
            eInfo = bouncing_fmu.get_event_info()

            # Retrieve solutions (if needed)
            if eInfo.newDiscreteStatesNeeded:
                # bouncing_fmu.get_real,get_integer,get_boolean,get_string(valueref)
                pass
                
        # Check if the event affected the state values and if so sets them
        if eInfo.valuesOfContinuousStatesChanged:
            x = bouncing_fmu.continuous_states
            
        # Get new nominal values.
        if eInfo.nominalsOfContinuousStatesChanged:
            atol = 0.01*rtol*bouncing_fmu.nominal_continuous_states
                    
        # Check for new time event
        if eInfo.eInfo.nextEventTimeDefined:
            Tnext = min(eInfo.nextEventTime, Tend)
        else:
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            Tnext = Tend
        bouncing_fmu.enter_continuous_time_mode()

If an event occurred, we enter the iteration loop and the event mode where we loop until the solution of the new
states have converged. During this iteration we can also retrieve the intermediate values with the normal get
methods. At this point eInfo contains information about the changes made in the iteration. If the state values have
changed, they are retrieved. If the state references have changed, meaning that the state variables no longer have
the same meaning as before by pointing to another set of continuous variables in the model, for example in the
case with dynamic state selection, new absolute tolerances are calculated with the new nominal values. Finally the
model is checked for a new time event and the continuous time mode is entered again.

    event_ind = event_ind_new
        
    # Retrieve solutions at t=time for outputs
    # bouncing_fmu.get_real,get_integer,get_boolean,get_string (valueref)
            
    t_sol += [time]
    sol += [bouncing_fmu.get_real(vref)]

In the end of the loop, the solution is stored and the old event indicators are stored for use in the next loop.

After the loop has finished, by reaching the final time, we plot the simulation results

# Plot the height
P.figure(1)
P.plot(t_sol,N.array(sol)[:,0])
P.title(bouncing_fmu.get_name())
P.ylabel('Height (m)')
P.xlabel('Time (s)')
# Plot the velocity
P.figure(2)
P.plot(t_sol,N.array(sol)[:,1])
P.title(bouncing_fmu.get_name())
P.ylabel('Velocity (m/s)')
P.xlabel('Time (s)')
P.show()

and the figure below shows the results.
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Figure 5.7 Simulation result

5.4.5. Simulation of Co-Simulation FMUs

Simulation of a Co-Simulation FMU follows the same workflow as simulation of a Model Exchange FMU. The
model we would like to simulate is a model of a bouncing ball, the file bouncingBall.fmu is located in the ex-
amples folder in the JModelica.org installation, pyfmi/examples/files/CS1.0/ for version 1.0 and pyfmi/ex-
amples/files/CS2.0/ for version 2.0. The FMU is a Co-simulation FMU and in order to simulate it, we start by
importing the necessary methods and packages into Python:

import pylab as P           # For plotting
from pyfmi import load_fmu  # For loading the FMU 

Here, we have imported packages for plotting and the method load_fmu which takes as input an FMU and then
determines the type and returns the appropriate class. Now, we need to load the FMU.

model = load_fmu('bouncingBall.fmu')

The model object can now be used to interact with the FMU, setting and getting values for instance. A simulation
is performed by invoking the simulate method:

res = model.simulate(final_time=2.)

As a Co-Simulation FMU contains its own integrator, the method simulate calls this integrator. Finally, plotting
the result is done as before:

# Retrieve the result for the variables
h_res = res['h']
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v_res = res['v']
t     = res['time'] 
# Plot the solution
# Plot the height
fig = P.figure()
P.clf()
P.subplot(2,1,1)
P.plot(t, h_res)
P.ylabel('Height (m)')
P.xlabel('Time (s)')
# Plot the velocity
P.subplot(2,1,2)
P.plot(t, v_res)
P.ylabel('Velocity (m/s)')
P.xlabel('Time (s)')
P.suptitle('FMI Bouncing Ball')
P.show()

and the figure below shows the results.

Figure 5.8 Simulation result
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Chapter 6. Dynamic Optimization in
Python
6.1. Introduction
JModelica.org supports optimization of dynamic and steady state models. Many engineering problems can be
cast as optimization problems, including optimal control, minimum time problems, optimal design, and model
calibration. These different types of problems will be illustrated and it will be shown how they can be formulated
and solved. The chapter starts with an introductory example in Section 6.2 and in Section 6.3, the details of how the
optimization algorithms are invoked are explained. The following sections contain tutorial exercises that illustrates
how to set up and solve different kinds of optimization problems.

When formulating optimization problems, models are expressed in the Modelica language, whereas optimization
specifications are given in the Optimica extension which is described in Chapter 8. The tutorial exercises in this
chapter assumes that the reader is familiar with the basics of Modelica and Optimica.

6.2. A first example
In this section, a simple optimal control problem will be solved. Consider the optimal control problem for the Van
der Pol oscillator model:

optimization VDP_Opt (objectiveIntegrand = x1^2 + x2^2 + u^2,
                      startTime = 0,
                      finalTime = 20)

  // The states
  Real x1(start=0,fixed=true);
  Real x2(start=1,fixed=true);

  // The control signal
  input Real u;

equation
  der(x1) = (1 - x2^2) * x1 - x2 + u;
  der(x2) = x1;
constraint 
   u<=0.75;
end VDP_Opt;

Create a new file named VDP_Opt.mop and save it in you working directory. Notice that this model contains both the
dynamic system to be optimized and the optimization specification. This is possible since Optimica is an extension
of Modelica and thereby supports also Modelica constructs such as variable declarations and equations. In most
cases, however, Modelica models are stored separately from the Optimica specifications.
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Next, create a Python script file and a write (or copy paste) the following commands:

# Import the function for transfering a model to CasADiInterface
from pyjmi import transfer_optimization_problem

# Import the plotting library
import matplotlib.pyplot as plt

Next, we transfer the model:

# Transfer the optimization problem to casadi
 op = transfer_optimization_problem("VDP_Opt", "VDP_Opt.mop")

The function transfer_optimization_problem transfers the optimization problem into Python and expresses
it's variables, equations, etc., using the automatic differentiation tool CasADi. This object represents the compiled
model and is used to invoke the optimization algorithm:

res = op.optimize()

In this case, we use the default settings for the optimization algorithm. The result object can now be used to access
the optimization result:

# Extract variable profiles
x1=res['x1']
x2=res['x2']
u=res['u']
t=res['time']

The variable trajectories are returned as NumPy arrays and can be used for further analysis of the optimization
result or for visualization:

plt.figure(1)
plt.clf()
plt.subplot(311)
plt.plot(t,x1)
plt.grid()
plt.ylabel('x1')

plt.subplot(312)
plt.plot(t,x2)
plt.grid()
plt.ylabel('x2')

plt.subplot(313)
plt.plot(t,u)
plt.grid()
plt.ylabel('u')
plt.xlabel('time')
plt.show()

You should now see the optimization result as shown in Figure 6.1.
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Optimal control and state profiles for the Van Der Pol optimal control problem.
Figure 6.1 Optimal profiles for the VDP oscillator

6.3. Solving optimization problems

The first step when solving an optimization problem is to formulate a model and an optimization specification and
then compile the model as described in the following sections in this chapter. There are currently two different op-
timization algorithms available in JModelica.org, which are suitable for different classes of optimization problems.

• Dynamic optimization of DAEs using direct collocation with CasADi. This algorithm is the default algorithm
for solving optimal control and parameter estimation problems. It is implemented in Python, uses CasADi for
computing function derivatives and the nonlinear programming solvers IPOPT or WORHP for solving the re-
sulting NLP. Use this method if your model is a DAE and does not contain discontinuities.

• Derivative free calibration and optimization of ODEs with FMUs. This algorithm solves parameter opti-
mization and model calibration problems and is based on FMUs. The algorithm is implemented in Python and
relies on a Nelder-Mead derivative free optimization algorithm. Use this method if your model is of large scale
and has a modest number of parameters to calibrate and/or contains discontinuities or hybrid elements. Note that
this algorithm is applicable to models which have been exported as FMUs also by other tools than JModelica.org.

To illustrate how to solve optimization problems the Van der Pol problem presented above is used. First, the model
is transferred into Python

op = transfer_optimization_problem("VDP_pack.VDP_Opt2", "VDP_Opt.mop")
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All operations that can be performed on the model are available as methods of the op object and
can be accessed by tab completion. Invoking an optimization algorithm is done by calling the method
OptimizationProblem.optimize, which performs the following tasks:

• Sets up the selected algorithm with default or user defined options

• Invokes the algorithm to find a numerical solution to the problem

• Writes the result to a file

• Returns a result object from which the solution can be retrieved

The interactive help for the optimize method is displayed by the command:

>>> help(op.optimize)
    Solve an optimization problem.
        
    Parameters::
        
        algorithm --
            The algorithm which will be used for the optimization is 
            specified by passing the algorithm class name as string or 
            class object in this argument. 'algorithm' can be any 
            class which implements the abstract class AlgorithmBase 
            (found in algorithm_drivers.py). In this way it is 
            possible to write custom algorithms and to use them with this 
            function.
    
            The following algorithms are available:
            - 'LocalDAECollocationAlg'. This algorithm is based on
              direct collocation on finite elements and the algorithm IPOPT
              is used to obtain a numerical solution to the problem.
            Default: 'LocalDAECollocationAlg'
            
        options -- 
            The options that should be used in the algorithm. The options
            documentation can be retrieved from an options object:
            
                >>> myModel = OptimizationProblem(...)
                >>> opts = myModel.optimize_options()
                >>> opts?
    
            Valid values are: 
            - A dict that overrides some or all of the algorithm's default values. 
              An empty  dict will thus give all options with default values.
            - An Options object for the corresponding algorithm, e.g. 
              LocalDAECollocationAlgOptions for LocalDAECollocationAlg.
            Default: Empty dict
        
    Returns::
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        A result object, subclass of algorithm_drivers.ResultBase.

The optimize method can be invoked without any arguments, in which case the default optimization algorithm,
with default options, is invoked:

res = vdp.optimize()

In the remainder of this chapter the available algorithms are described in detail. Options for an algorithm can be
set using the options argument to the optimize method. It is convenient to first obtain an options object in order
to access the documentation and default option values. This is done by invoking the method optimize_options:

>>> help(op.optimize_options)
    Returns an instance of the optimize options class containing options 
    default values. If called without argument then the options class for 
    the default optimization algorithm will be returned.
    
    Parameters::
    
        algorithm --
            The algorithm for which the options class should be returned. 
            Possible values are: 'LocalDAECollocationAlg'.
            Default: 'LocalDAECollocationAlg'
            
    Returns::
    
        Options class for the algorithm specified with default values.

The option object is essentially a Python dictionary and options are set simply by using standard dictionary syntax:

opts = vdp.optimize_options()
opts['n_e'] = 5

The optimization algorithm may then be invoked again with the new options:

res = vdp.optimize(options=opts)

Available options for each algorithm are documented in their respective sections in this Chapter.

The optimize method returns a result object containing the optimization result and some meta information about
the solution. The most common operation is to retrieve variable trajectories from the result object:

time = res['time']
x1 = res['x1']

Variable data is returned as NumPy arrays. The result object also contains references to the model that was opti-
mized, the name of the result file that was written to disk, a solver object representing the optimization algorithm
and an options object that was used when solving the optimization problem.
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6.4. Scaling
Many physical models contain variables with values that differ by several orders of magnitude. A typical example
is thermodynamic models containing pressures, temperatures and mass flows. Such large differences in scales may
have a severe deteriorating effect on the performance of numerical algorithms, and may in some cases even lead to
the algorithm failing. In order to relieve the user from the burden of manually scaling variables, Modelica offers the
nominal attribute, which can be used to automatically scale a model. Consider the Modelica variable declaration:

Real pressure(start=101.3e3, nominal=1e5);

Here, the nominal attribute is used to specify that the variable pressure takes on values which are on the order of
1e5. In order to use nominal attributes for scaling with CasADi-based algorithms, scaling is enabled by setting the
algorithm option variable_scaling to True, and is enabled by default . When scaling is enabled, all variables
with a set nominal attribute are then scaled by dividing the variable value with its nominal value, i.e., from an
algorithm point of view, all variables should take on values close to one. Notice that variables typically vary during
a simulation or optimization and that it is therefore not possible to obtain perfect scaling. In order to ensure that
model equations are fulfilled, each occurrence of a variable is multiplied with its nominal value in equations. For
example, the equation:

T = f(p)

is replaced by the equation

T_scaled*T_nom = f(p_scaled*p_nom)

when variable scaling is enabled.

The algorithm in Section 6.5 also has support for providing trajectories (obtained by for example simulation) that
are used for scaling. This means that it usually is not necessary to provide nominal values for all variables, and
that it is possible to use time-varying scaling factors.

For debugging purposes, it is sometimes useful to write a simulation/optimization/initialization result to file
in scaled format, in order to detect if there are some variables which require additional scaling. The option
write_scaled_result has been introduced as an option to the initialize, simulate and optimize methods
for this purpose.

6.5. Dynamic optimization of DAEs using direct collo-
cation with CasADi

6.5.1. Algorithm overview

The direct collocation method described in this section can be used to solve dynamic optimization problems, in-
cluding optimal control problems and parameter optimization problems. In the collocation method, the dynamic
model variable profiles are approximated by piecewise polynomials. This method of approximating a differential
equation corresponds to a fixed step implicit Runge-Kutta scheme, where the mesh defines the length of each step.
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Also, the number of collocation points in each element, or step, needs to be provided. This number corresponds
to the stage order of the Runge-Kutta scheme. The selection of mesh is analogous to the choice of step length in
a one-step algorithm for solving differential equations. Accordingly, the mesh needs to be fine-grained enough to
ensure sufficiently accurate approximation of the differential constraint. The nonlinear programming (NLP) solvers
IPOPT and WORHP can be used to solve the nonlinear program resulting from collocation. The needed first- and
second-order derivatives are obtained using CasADi by algorithmic differentiation. For more details on the inner
workings of the algorithm, see [Mag2015] and Chapter 3 in [Mag2016].

The NLP solvers require that the model equations are twice continuously differentiable with respect to all of the
variables. This for example means that the model can not contain integer variables or if clauses depending on
the states.

Optimization models are represented using the class OptimizationProblem, which can be instantiated using the
transfer_optimization_problem method. An object containing all the options for the optimization algorithm
can be retrieved from the object:

from pyjmi import transfer_optimization_problem
op = transfer_optimization_problem(class_name, optimica_file_path)
opts = op.optimize_options()
opts? # View the help text

After options have been set, the options object can be propagated to the optimize method, which solves the op-
timization problem:

res = op.optimize(options=opts)

The standard options for the algorithm are shown in Table 6.1. Additional documentation is available in the Python
class documentation. The algorithm also has a lot of experimental options, which are not as well tested and some
are intended for debugging purposes. These are shown in Table 6.2, and caution is advised when changing their
default values.

Table 6.1 Standard options for the CasADi- and collocation-based optimization algorithm

Option Default Description

n_e 50 Number of finite elements.

hs None Element lengths. Possible values: None, iterable
of floats and "free" None: The element lengths are
uniformly distributed. iterable of floats: Compo-
nent i of the iterable specifies the length of element
i. The lengths must be normalized in the sense that
the sum of all lengths must be equal to 1. "free":
The element lengths become optimization variables
and are optimized according to the algorithm option
free_element_lengths_data. WARNING: The "free"
option is very experimental and will not always give
desirable results.
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Option Default Description

n_cp 3 Number of collocation points in each element.

expand_to_sx "NLP" Whether to expand the CasADi MX graphs to SX
graphs. Possible values: "NLP", "DAE", "no". "NLP":
The entire NLP graph is expanded into SX. This will
lead to high evaluation speed and high memory con-
sumption. "DAE": The DAE, objective and constraint
graphs for the dynamic optimization problem expres-
sions are expanded into SX, but the full NLP graph is
an MX graph. This will lead to moderate evaluation
speed and moderate memory consumption. "no": All
constructed graphs are MX graphs. This will lead to
low evaluation speed and low memory consumption.

init_traj None Variable trajectory data used for initialization of the
NLP variables.

nominal_traj None Variable trajectory data used for scaling of the NLP
variables. This option is only applicable if variable
scaling is enabled.

blocking_factors None (not used) Blocking factors are used to enforce piecewise
constant inputs. The inputs may only change val-
ues at some of the element boundaries. The option
is either None (disabled), given as an instance of
pyjmi.optimization.casadi_collocation.BlockingFactors
or as a list of blocking factors. If the options is a list
of blocking factors, then each element in the list spec-
ifies the number of collocation elements for which
all of the inputs must be constant. For example, if
blocking_factors == [2, 2, 1], then the inputs will at-
tain 3 different values (number of elements in the list),
and it will change values between collocation element
number 2 and 3 as well as number 4 and 5. The sum of
all elements in the list must be the same as the number
of collocation elements and the length of the list de-
termines the number of separate values that the inputs
may attain. See the documentation of the BlockingFac-
tors class for how to use it. If blocking_factors is None,
then the usual collocation polynomials are instead used
to represent the controls.

external_data None Data used to penalize, constrain or eliminate certain
variables.
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Option Default Description

delayed_feedback None If not None, should be a dict with mappings
'delayed_var': ('undelayed_var', delay_ne).
For each key-value pair, adds the the constraint
that the variable 'delayed_var' equals the val-
ue of the variable 'undelayed_var' delayed by
delay_ne elements. The initial part of the trajectory
for 'delayed_var' is fixed to its initial guess given by
the init_traj option or the initialGuess attribute.
'delayed_var' will typically be an input. This is an
experimental feature and is subject to change.

solver 'IPOPT' Specifies the nonlinear programming solver to be used.
Possible choices are 'IPOPT' and 'WORHP'.

verbosity 3 Sets verbosity of algorithm output. 0 prints nothing, 3
prints everything.

IPOPT_options IPOPT defaults IPOPT options for solution of NLP. See IPOPT's docu-
mentation for available options.

WORHP_options WORHP defaults WORHP options for solution of NLP. See WORHP's
documentation for available options.

Table 6.2 Experimental and debugging options for the CasADi- and collocation-based optimization algorithm

Option Default Description

free_element_lengths_dataNone Data used for optimizing the element lengths if they
are free. Should be None when hs != "free".

discr 'LGR' Determines the collocation scheme used to discretize
the problem. Possible values: "LG" and "LGR". "LG":
Gauss collocation (Legendre-Gauss) "LGR": Radau
collocation (Legendre-Gauss-Radau).

named_vars False If enabled, the solver will create a duplicated set of
NLP variables which have names corresponding to the
Modelica/Optimica variable names. Symbolic expres-
sions of the NLP consisting of the named variables
can then be obtained using the get_named_var_expr
method of the collocator class. This option is only in-
tended for investigative purposes.

init_dual None Dictionary containing vectors of initial guess for NLP
dual variables. Intended to be obtained as the solu-
tion of an optimization problem which has an identical
structure, which is stored in the dual_opt attribute of
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Option Default Description

the result object. The dictionary has two keys, 'g' and
'x', containing vectors of the corresponding dual vari-
able intial guesses. Note that when using IPOPT, the
option warm_start_init_point has to be activated for
this option to have an effect.

variable_scaling True Whether to scale the variables according to their
nominal values or the trajectories provided with the
nominal_traj option.

equation_scaling False Whether to scale the equations in collocated NLP.
Many NLP solvers default to scaling the equations, but
if it is done through this option the resulting scaling
can be inspected.

nominal_traj_mode {"_default_mode": "lin-
ear"}

Mode for computing scaling factors based on nominal
trajectories. Four possible modes: "attribute": Time-
invariant, linear scaling based on Nominal attribute
"linear": Time-invariant, linear scaling "affine": Time-
invariant, affine scaling "time-variant": Time-vari-
ant, linear scaling Option is a dictionary with variable
names as keys and corresponding scaling modes as val-
ues. For all variables not occuring in the keys of the
dictionary, the mode specified by the "_default_mode"
entry will be used, which by default is "linear".

result_file_name "" Specifies the name of the file where the result is writ-
ten. Setting this option to an empty string results in a
default file name that is based on the name of the mod-
el class.

write_scaled_result False Return the scaled optimization result if set to True, oth-
erwise return the unscaled optimization result. This
option is only applicable when variable_scaling is en-
abled and is only intended for debugging.

print_condition_numbersFalse Prints the condition numbers of the Jacobian of the
constraints and of the simplified KKT matrix at the ini-
tial and optimal points. Note that this is only feasible
for very small problems.

result_mode 'collocation_points' Specifies the output format of the optimization
result. Possible values: "collocation_points",
"element_interpolation" and "mesh_points"
"collocation_points": The optimization result is giv-
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Option Default Description

en at the collocation points as well as the start and fi-
nal time point. "element_interpolation": The values
of the variable trajectories are calculated by evaluat-
ing the collocation polynomials. The algorithm option
n_eval_points is used to specify the evaluation points
within each finite element. "mesh_points": The opti-
mization result is given at the mesh points.

n_eval_points 20 The number of evaluation points used in each ele-
ment when the algorithm option result_mode is set
to "element_interpolation". One evaluation point is
placed at each element end-point (hence the option val-
ue must be at least 2) and the rest are distributed uni-
formly.

checkpoint False If checkpoint is set to True, transcribed NLP is built
with packed MX functions. Instead of calling the DAE
residual function, the collocation equation function,
and the lagrange term function n_e * n_cp times, the
check point scheme builds an MXFunction evaluating
n_cp collocation points at the same time, so that the
packed MXFunction is called only n_e times. This ap-
proach improves the code generation and it is expected
to reduce the memory usage for constructing and solv-
ing the NLP.

quadrature_constraint True Whether to use quadrature continuity constraints. This
option is only applicable when using Gauss colloca-
tion. It is incompatible with eliminate_der_var set to
True. True: Quadrature is used to get the values of the
states at the mesh points. False: The Lagrange basis
polynomials for the state collocation polynomials are
evaluated to get the values of the states at the mesh
points.

mutable_external_data True If true and the external_data option is used, the ex-
ternal data can be changed after discretization, e.g. dur-
ing warm starting.

explicit_hessian False Explicitly construct the Lagrangian Hessian, rather
than rely on CasADi to automatically generate it.
This is only done to circumvent a bug in CasADi, see
#4313, which rarely causes the automatic Hessian to be
incorrect.
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Option Default Description

order "default" Order of variables and equations. Requires
write_scaled_result! Possible values: "default", "re-
verse", and "random"

The last standard options, IPOPT_options and WORHP_options, serve as interfaces for setting options in IPOPT
and WORHP. To exemplify the usage of these algorithm options, the maximum number of iterations in IPOPT
can be set using the following syntax:

opts = model.optimize_options()
opts["IPOPT_options"]["max_iter"] = 10000

JModelica.org's CasADi-based framework does not support simulation and initialization of models. It is recom-
mended to use PyFMI for these purposes instead.

Some statistics from the NLP solver can be obtained by issuing the command

res_opt.get_solver_statistics()

The return argument of this function can be found by using the interactive help:

help(res_opt.get_solver_statistics)
Get nonlinear programming solver statistics.
    
Returns::
    
    return_status -- 
        Return status from nonlinear programming solver.
            
    nbr_iter -- 
        Number of iterations.
            
    objective -- 
       Final value of objective function.
            
    total_exec_time -- 
        Execution time.

6.5.1.1. Reusing the same discretization for several optimization solutions

When collocation is used to solve a dynamic optimization problem, the solution procedure is carried out in several
steps:

• Discretize the dynamic optimization problem, which is formulated in continuous time. The result is a large and
sparse nonlinear program (NLP). The discretization step depends on the options as provided to the optimize
method.
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• Solve the NLP.

• Postprocess the NLP solution to extract an approximate solution to the original dynamic optimization problem.

Depending on the problem, discretization may account for a substantial amount of the total solution time, or even
dominate it.

The same discretization can be reused for several solutions with different parameter values, but the same op-
tions. Discretization will be carried out each time the optimize method is called on the model. Instead of calling
model.optimize(options=opts), a problem can be discretized using the prepare_optimization method:

solver = model.prepare_optimization(options=opts)

Alternatively, the solver can be retrieved from an existing optimization result, as solver = res.get_solver().
Manipulating the solver (e.g. setting parameters) may affect the original optimization problem object and vice
versa.

The obtained solver object represents the discretized problem, and can be used to solve it using its own optimize
method:

res = solver.optimize()

While options cannot be changed in general, parameter values, initial trajectories, external data, and NLP solver
options can be changed on the solver object. Parameter values can be updated with

solver.set(parameter_name, value)

and current values retrieved with

solver.get(parameter_name)

New initial trajectories can be set with

solver.set_init_traj(init_traj)

where init_traj has the same format as used with the init_traj option.

External data can be updated with

solver.set_external_variable_data(variable_name, data)

(unless the mutable_external_data option is turned off). variable_name should correspond to one of the vari-
ables used in the external_data option passed to prepare_optimization. data should be the new data, in the
same format as variable data used in the external_data option. The kind of external data used for the variable
(eliminated/constrained/quadratic penalty) is not changed.

Settings to the nonlinear solver can be changed with
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solver.set_solver_option(solver_name, name, value)

where solver_name is e g 'IPOPT' or 'WORHP'.

6.5.1.2. Warm starting

The solver object obtained from prepare_optimization can also be used for warm starting, where an obtained
optimization solution (including primal and dual variables) is used as the initial guess for a new optimization with
new parameter values.

To reuse the solver's last obtained solution as initial guess for the next optimization, warm starting can be enabled
with

solver.set_warm_start(True)

before calling solver.optimize(). This will reuse the last solution for the primal variables (unless
solver.set_init_traj was called since the last solver.optimize) as well as the last solution for the dual vari-
ables.

When using the IPOPT solver with warm starting, several solver options typically also need to be set to see the
benefits, e g:

def set_warm_start_options(solver, push=1e-4, mu_init=1e-1):    
    solver.set_solver_option('IPOPT', 'warm_start_init_point', 'yes')
    solver.set_solver_option('IPOPT', 'mu_init', mu_init)

    solver.set_solver_option('IPOPT', 'warm_start_bound_push', push)
    solver.set_solver_option('IPOPT', 'warm_start_mult_bound_push', push)
    solver.set_solver_option('IPOPT', 'warm_start_bound_frac', push)
    solver.set_solver_option('IPOPT', 'warm_start_slack_bound_frac', push)
    solver.set_solver_option('IPOPT', 'warm_start_slack_bound_push', push)

set_warm_start_options(solver)

Smaller values of the push and mu arguments will make the solver place more trust in that the sought solution is
close to the initial guess, i e, the last solution.

6.5.2. Examples

6.5.2.1. Optimal control

This tutorial is based on the Hicks-Ray Continuously Stirred Tank Reactors (CSTR) system. The model was orig-
inally presented in [1]. The system has two states, the concentration, c, and the temperature, T. The control input to
the system is the temperature, Tc, of the cooling flow in the reactor jacket. The chemical reaction in the reactor is
exothermic, and also temperature dependent; high temperature results in high reaction rate. The CSTR dynamics
are given by:
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This tutorial will cover the following topics:

• How to solve a DAE initialization problem. The initialization model has equations specifying that all derivatives
should be identically zero, which implies that a stationary solution is obtained. Two stationary points, corre-
sponding to different inputs, are computed. We call the stationary points A and B respectively. Point A corre-
sponds to operating conditions where the reactor is cold and the reaction rate is low, whereas point B corresponds
to a higher temperature where the reaction rate is high.

• An optimal control problem is solved where the objective is to transfer the state of the system from stationary
point A to point B. The challenge is to ignite the reactor while avoiding uncontrolled temperature increases. It is
also demonstrated how to set parameter and variable values in a model. More information about the simultaneous
optimization algorithm can be found at JModelica.org API documentation.

• The optimization result is saved to file and then the important variables are plotted.

The Python commands in this tutorial may be copied and pasted directly into a Python shell, in some cases with
minor modifications. Alternatively, you may copy the commands into a text file, e.g., cstr_casadi.py.

Start the tutorial by creating a working directory and copy the file $JMODELICA_HOME/Python/pyjmi/exam-
ples/files/CSTR.mop to your working directory. An online version of CSTR.mop is also available (depending on
which browser you use, you may have to accept the site certificate by clicking through a few steps). If you choose
to create a Python script file, save it to the working directory.

Compile and instantiate a model object

The functions and classes used in the tutorial script need to be imported into the Python script. This is done by
the following Python commands. Copy them and paste them either directly into your Python shell or, preferably,
into your Python script file.

import numpy as N
import matplotlib.pyplot as plt

from pymodelica import compile_fmu
from pyfmi import load_fmu
from pyjmi import transfer_optimization_problem

To solve the initialization problem and simulate the model, we will first compile it as an FMU and load it in Python.
These steps are described in more detail in Section 4.

# Compile the stationary initialization model into an FMU
init_fmu = compile_fmu("CSTR.CSTR_Init", "CSTR.mop")
    

https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/CSTR.mop
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# Load the FMU
init_model = load_fmu(init_fmu)

At this point, you may open the file CSTR.mop, containing the CSTR model and the static initialization model
used in this section. Study the classes CSTR.CSTR and CSTR.CSTR_Init and make sure you understand the models.
Before proceeding, have a look at the interactive help for one of the functions you used:

help(compile_fmu)

Solve the DAE initialization problem

In the next step, we would like to specify the first operating point, A, by means of a constant input cooling tem-
perature, and then solve the initialization problem assuming that all derivatives are zero.

# Set input for Stationary point A
Tc_0_A = 250
init_model.set('Tc', Tc_0_A)

# Solve the initialization problem using FMI
init_model.initialize()

# Store stationary point A
[c_0_A, T_0_A] = init_model.get(['c', 'T'])

# Print some data for stationary point A
print(' *** Stationary point A ***')
print('Tc = %f' % Tc_0_A)
print('c = %f' % c_0_A)
print('T = %f' % T_0_A)

Notice how the method set is used to set the value of the control input. The initialization algorithm is invoked by
calling the method initialize, which returns a result object from which the initialization result can be accessed.
The values of the states corresponding to point A can then be extracted from the result object. Look carefully at
the printouts in the Python shell to see the stationary values. Display the help text for the initialize method and
take a moment to look it through. The procedure is now repeated for operating point B:

# Set inputs for Stationary point B
init_model.reset() # reset the FMU so that we can initialize it again
Tc_0_B = 280
init_model.set('Tc', Tc_0_B)

# Solve the initialization problem using FMI
init_model.initialize()

# Store stationary point B
[c_0_B, T_0_B] = init_model.get(['c', 'T'])

# Print some data for stationary point B
print(' *** Stationary point B ***')
print('Tc = %f' % Tc_0_B)
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print('c = %f' % c_0_B)
print('T = %f' % T_0_B)

We have now computed two stationary points for the system based on constant control inputs. In the next section,
these will be used to set up an optimal control problem.

Solving an optimal control problem

The optimal control problem we are about to solve is given by

and is expressed in Optimica format in the class CSTR.CSTR_Opt2 in the CSTR.mop file above. Have a look at this
class and make sure that you understand how the optimization problem is formulated and what the objective is.

Direct collocation methods often require good initial guesses in order to ensure robust convergence. Also, if the
problem is non-convex, initialization is even more critical. Since initial guesses are needed for all discretized vari-
ables along the optimization interval, simulation provides a convenient means to generate state and derivative pro-
files given an initial guess for the control input(s). It is then convenient to set up a dedicated model for computation
of initial trajectories. In the model CSTR.CSTR_Init_Optimization in the CSTR.mop file, a step input is applied
to the system in order obtain an initial guess. Notice that the variable names in the initialization model must match
those in the optimal control model.

First, compile the model and set model parameters:

# Compile the optimization initialization model
init_sim_fmu = compile_fmu("CSTR.CSTR_Init_Optimization", "CSTR.mop")

# Load the model
init_sim_model = load_fmu(init_sim_fmu)

# Set initial and reference values
init_sim_model.set('cstr.c_init', c_0_A)
init_sim_model.set('cstr.T_init', T_0_A)
init_sim_model.set('c_ref', c_0_B)
init_sim_model.set('T_ref', T_0_B)
init_sim_model.set('Tc_ref', Tc_0_B)

Having initialized the model parameters, we can simulate the model using the simulate function.

# Simulate with constant input Tc
init_res = init_sim_model.simulate(start_time=0., final_time=150.)
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The method simulate first computes consistent initial conditions and then simulates the model in the interval 0 to
150 seconds. Take a moment to read the interactive help for the simulate method.

The simulation result object is returned. Python dictionary access can be used to retrieve the variable trajectories.

# Extract variable profiles
t_init_sim = init_res['time']
c_init_sim = init_res['cstr.c']
T_init_sim = init_res['cstr.T']
Tc_init_sim = init_res['cstr.Tc']

# Plot the initial guess trajectories
plt.close(1)
plt.figure(1)
plt.hold(True)
plt.subplot(3, 1, 1)
plt.plot(t_init_sim, c_init_sim)
plt.grid()
plt.ylabel('Concentration')
plt.title('Initial guess obtained by simulation')

plt.subplot(3, 1, 2)
plt.plot(t_init_sim, T_init_sim)
plt.grid()
plt.ylabel('Temperature')

plt.subplot(3, 1, 3)
plt.plot(t_init_sim, Tc_init_sim)
plt.grid()
plt.ylabel('Cooling temperature')
plt.xlabel('time')
plt.show()

Look at the plots and try to relate the trajectories to the optimal control problem. Why is this a good initial guess?

Once the initial guess is generated, we compile the optimal control problem:

# Compile and load optimization problem
op = transfer_optimization_problem("CSTR.CSTR_Opt2", "CSTR.mop")

We will now initialize the parameters of the model so that their values correspond to the optimization objective
of transferring the system state from operating point A to operating point B. Accordingly, we set the parameters
representing the initial values of the states to point A and the reference values in the cost function to point B:

# Set reference values
op.set('Tc_ref', Tc_0_B)
op.set('c_ref', float(c_0_B))
op.set('T_ref', float(T_0_B))

# Set initial values
op.set('cstr.c_init', float(c_0_A))
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op.set('cstr.T_init', float(T_0_A))

We will also set some optimization options. In this case, we decrease the number of finite elements in the mesh
from 50 to 19, to be able to illustrate that simulation and optimization might not give the exact same result. This is
done by setting the corresponding option and providing it as an argument to the optimize method. We also lower
the tolerance of IPOPT to get a more accurate result. We are now ready to solve the actual optimization problem.
This is done by invoking the method optimize:

# Set options
opt_opts = op.optimize_options()
opt_opts['n_e'] = 19 # Number of elements
opt_opts['init_traj'] = init_res
opt_opts['nominal_traj'] = init_res
opt_opts['IPOPT_options']['tol'] = 1e-10

# Solve the optimal control problem
res = op.optimize(options=opt_opts)

You should see the output of IPOPT in the Python shell as the algorithm iterates to find the optimal solution.
IPOPT should terminate with a message like 'Optimal solution found' or 'Solved to acceptable level' in order for an
optimum to have been found. The optimization result object is returned and the optimization data are stored in res.

We can now retrieve the trajectories of the variables that we intend to plot:

# Extract variable profiles
c_res = res['cstr.c']
T_res = res['cstr.T']
Tc_res = res['cstr.Tc']
time_res = res['time']
c_ref = res['c_ref']
T_ref = res['T_ref']
Tc_ref = res['Tc_ref']

Finally, we plot the result using the functions available in matplotlib:

# Plot the results
plt.close(2)
plt.figure(2)
plt.hold(True)
plt.subplot(3, 1, 1)
plt.plot(time_res, c_res)
plt.plot(time_res, c_ref, '--')
plt.grid()
plt.ylabel('Concentration')
plt.title('Optimized trajectories')

plt.subplot(3, 1, 2)
plt.plot(time_res, T_res)
plt.plot(time_res, T_ref, '--')
plt.grid()
plt.ylabel('Temperature')
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plt.subplot(3, 1, 3)
plt.plot(time_res, Tc_res)
plt.plot(time_res, Tc_ref, '--')
plt.grid()
plt.ylabel('Cooling temperature')
plt.xlabel('time')
plt.show()

You should now see the plot shown in Figure 6.2.

Figure 6.2 Optimal profiles for the CSTR problem.

Take a minute to analyze the optimal profiles and to answer the following questions:

1. Why is the concentration high in the beginning of the interval?

2. Why is the input cooling temperature high in the beginning of the interval?

Verify optimal control solution

Solving optimal control problems by means of direct collocation implies that the differential equation is approxi-
mated by a time-discrete counterpart. The accuracy of the solution is dependent on the method of collocation and
the number of elements. In order to assess the accuracy of the discretization, we may simulate the system using the
optimal control profile as input. With this approach, the state profiles are computed with high accuracy and the re-
sult may then be compared with the profiles resulting from optimization. Notice that this procedure does not verify
the optimality of the resulting optimal control profiles, but only the accuracy of the discretization of the dynamics.

We start by compiling and loading the model used for simulation:
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# Compile model
sim_fmu = compile_fmu("CSTR.CSTR", "CSTR.mop")

# Load model
sim_model = load_fmu(sim_fmu)

The solution obtained from the optimization are values at a finite number of time points, in this case the collocation
points. The CasADi framework also supports obtaining all the collocation polynomials for all the input variables
in the form of a function instead, which can be used during simulation for greater accuracy. We obtain it from the
result object in the following manner.

# Get optimized input
(_, opt_input) = res.get_opt_input()

We specify the initial values and simulate using the optimal trajectory:

# Set initial values
sim_model.set('c_init', c_0_A)
sim_model.set('T_init', T_0_A)

# Simulate using optimized input
sim_opts = sim_model.simulate_options()
sim_opts['CVode_options']['rtol'] = 1e-6
sim_opts['CVode_options']['atol'] = 1e-8
res = sim_model.simulate(start_time=0., final_time=150.,
                         input=('Tc', opt_input), options=sim_opts)

Finally, we load the simulated data and plot it to compare with the optimized trajectories:

# Extract variable profiles
c_sim=res['c']
T_sim=res['T']
Tc_sim=res['Tc']
time_sim = res['time']

# Plot the results
plt.figure(3)
plt.clf()
plt.hold(True)
plt.subplot(311)
plt.plot(time_res,c_res,'--')
plt.plot(time_sim,c_sim)
plt.legend(('optimized','simulated'))
plt.grid()
plt.ylabel('Concentration')

plt.subplot(312)
plt.plot(time_res,T_res,'--')
plt.plot(time_sim,T_sim)
plt.legend(('optimized','simulated'))
plt.grid()



Dynamic Optimization in Python

65

plt.ylabel('Temperature')

plt.subplot(313)
plt.plot(time_res,Tc_res,'--')
plt.plot(time_sim,Tc_sim)
plt.legend(('optimized','simulated'))
plt.grid()
plt.ylabel('Cooling temperature')
plt.xlabel('time')
plt.show()

You should now see the plot shown in Figure 6.3.

Figure 6.3 Optimal control profiles and simulated trajectories corresponding to the optimal control input.

Discuss why the simulated trajectories differ from their optimized counterparts.

Exercises

After completing the tutorial you may continue to modify the optimization problem and study the results.

1. Remove the constraint on cstr.T. What is then the maximum temperature?

2. Play around with weights in the cost function. What happens if you penalize the control variable with a larger
weight? Do a parameter sweep for the control variable weight and plot the optimal profiles in the same figure.

3. Add terminal constraints (cstr.T(finalTime)=someParameter) for the states so that they are equal to point
B at the end of the optimization interval. Now reduce the length of the optimization interval. How short can
you make the interval?
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4. Try varying the number of elements in the mesh and the number of collocation points in each interval.

References

[1] G.A. Hicks and W.H. Ray. Approximation Methods for Optimal Control Synthesis. Can. J. Chem. Eng.,
40:522–529, 1971.

[2] Bieger, L., A. Cervantes, and A. Wächter (2002): "Advances in simultaneous strategies for dynamic optimiza-
tion." Chemical Engineering Science, 57, pp. 575-593.

6.5.2.2. Minimum time problems

Minimum time problems are dynamic optimization problems where not only the control inputs are optimized,
but also the final time. Typically, elements of such problems include initial and terminal state constraints and an
objective function where the transition time is minimized. The following example will be used to illustrate how
minimum time problems are formulated in Optimica. We consider the optimization problem:

subject to the Van der Pol dynamics:

and the constraints:

This problem is encoded in the following Optimica specification:

optimization VDP_Opt_Min_Time (objective = finalTime,
                               startTime = 0,
                               finalTime(free=true,min=0.2,initialGuess=1)) 

  // The states
  Real x1(start = 0,fixed=true);
  Real x2(start = 1,fixed=true);

  // The control signal
  input Real u(free=true,min=-1,max=1);

equation
  // Dynamic equations
  der(x1) = (1 - x2^2) * x1 - x2 + u;
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  der(x2) = x1;

constraint
  // terminal constraints
  x1(finalTime)=0;
  x2(finalTime)=0;
end VDP_Opt_Min_Time;

Notice how the class attribute finalTime is set to be free in the optimization. The problem is solved by the following
Python script:

# Import numerical libraries
import numpy as N
import matplotlib.pyplot as plt

# Import the JModelica.org Python packages
from pymodelica import compile_fmu
from pyfmi import load_fmu
from pyjmi import transfer_optimization_problem

vdp = transfer_optimization_problem("VDP_Opt_Min_Time", "VDP_Opt_Min_Time.mop")
res = vdp.optimize()

# Extract variable profiles
x1=res['x1']
x2=res['x2']
u=res['u']
t=res['time']

# Plot
plt.figure(1)
plt.clf()
plt.subplot(311)
plt.plot(t,x1)
plt.grid()
plt.ylabel('x1')

plt.subplot(312)
plt.plot(t,x2)
plt.grid()
plt.ylabel('x2')

plt.subplot(313)
plt.plot(t,u,'x-')
plt.grid()
plt.ylabel('u')
plt.xlabel('time')
plt.show()

The resulting control and state profiles are shown in Figure 6.4. Notice the difference as compared to Figure
Figure 6.1, where the Van der Pol oscillator system is optimized using a quadratic objective function.
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Figure 6.4 Minimum time profiles for the Van der Pol Oscillator.

6.5.2.3. Optimization under delay constraints

In some applications, it can be useful to solve dynamic optimization problems that include time delays in the
model. Collocation based optimization schemes are well suited to handle this kind of models, since the whole state
trajectory is available at the same time. The direct collocation method using CasADi contains an experimental
implementation of such delays, which we will describe with an example. Please note that the implementation of
this feature is experimental and subject to change.

We consider the optimization problem

subject to the dynamics

and the boundary conditions
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The effect of positive  is initially to increase , but after a time delay of time , it comes back with twice
the effect in the negative direction through .

We model everything except the delay constraint in the Optimica specification

optimization DelayTest(startTime = 0, finalTime = 1,
                       objectiveIntegrand = 4*x^2 + u1^2 + u2^2)
    input Real u1, u2;
    Real x(start = 1, fixed=true);
equation
    der(x) = u1 - 2*u2;
constraint
    x(finalTime) = 0;
end DelayTest;

The problem is then solved in the following Python script. Notice how the delay constraint is added using the
delayed_feedback option, and the initial part of  is set using the initialGuess attribute:

# Import numerical libraries
import numpy as np
import matplotlib.pyplot as plt

# Import JModelica.org Python packages
from pyjmi import transfer_optimization_problem

n_e = 20
delay_n_e = 5
horizon = 1.0
delay = horizon*delay_n_e/n_e

# Compile and load optimization problem
opt = transfer_optimization_problem("DelayTest", "DelayedFeedbackOpt.mop")

# Set value for u2(t) when t < delay
opt.getVariable('u2').setAttribute('initialGuess', 0.25)

# Set algorithm options
opts = opt.optimize_options()
opts['n_e'] = n_e
# Set delayed feedback from u1 to u2
opts['delayed_feedback'] = {'u2': ('u1', delay_n_e)}

# Optimize
res = opt.optimize(options=opts)

# Extract variable profiles
x_res = res['x']
u1_res = res['u1']
u2_res = res['u2']
time_res = res['time']
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# Plot results
plt.plot(time_res, x_res, time_res, u1_res, time_res, u2_res)
plt.hold(True)
plt.plot(time_res+delay, u1_res, '--')
plt.hold(False)
plt.legend(('x', 'u1', 'u2', 'delay(u1)'))
plt.show()

The resulting control and state profiles are shown in Figure 6.5. Notice that  grows initially since  is set positive
to exploit the greater control gain that appears delayed through . At time , the delayed value of  ceases
to influence  within the horizon, and  immediately switches sign to drive down  to its final value .

Figure 6.5 Optimization result for delayed feedback example.

6.5.2.4. Parameter estimation

In this tutorial it will be demonstrated how to solve parameter estimation problems. We consider a quadruple tank
system depicted in Figure 6.6.
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Figure 6.6 A schematic picture of the quadruple tank process.

The dynamics of the system are given by the differential equations:

Where the nominal parameter values are given in Table 6.3.

Table 6.3 Parameters for the quadruple tank process.

Parameter name Value Unit

Ai 4.9 cm2

ai 0.03 cm2

ki 0.56 cm2V-1s-1

#i 0.3 Vcm-1

The states of the model are the tank water levels x1, x2, x3, and x4. The control inputs, u1 and u2, are the flows
generated by the two pumps.
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The Modelica model for the system is located in QuadTankPack.mop. Download the file to your working directory
and open it in a text editor. Locate the class QuadTankPack.QuadTank and make sure you understand the model.
In particular, notice that all model variables and parameters are expressed in SI units.

Measurement data, available in qt_par_est_data.mat, has been logged in an identification experiment. Down-
load also this file to your working directory.

Open a text file and name it qt_par_est_casadi.py. Then enter the imports:

import os
from collections import OrderedDict

from scipy.io.matlab.mio import loadmat
import matplotlib.pyplot as plt
import numpy as N

from pymodelica import compile_fmu
from pyfmi import load_fmu
from pyjmi import transfer_optimization_problem
from pyjmi.optimization.casadi_collocation import ExternalData

into the file. Next, we compile the model, which is used for simulation, and the optimization problem, which is
used for estimating parameter values. We will take a closer look at the optimization formulation later, so do not
worry about that one for the moment. The initial states for the experiment are stored in the optimization problem,
which we propagate to the model for simulation.

# Compile and load FMU, which is used for simulation
model = load_fmu(compile_fmu('QuadTankPack.QuadTank', "QuadTankPack.mop"))

# Transfer problem to CasADi Interface, which is used for estimation
op = transfer_optimization_problem("QuadTankPack.QuadTank_ParEstCasADi",
                                   "QuadTankPack.mop")

# Set initial states in model, which are stored in the optimization problem
x_0_names = ['x1_0', 'x2_0', 'x3_0', 'x4_0']
x_0_values = op.get(x_0_names)
model.set(x_0_names, x_0_values)

Next, we enter code to open the data file, extract the measurement time series and plot the measurements:

# Load measurement data from file
data = loadmat("qt_par_est_data.mat", appendmat=False)

# Extract data series
t_meas = data['t'][6000::100, 0] - 60
y1_meas = data['y1_f'][6000::100, 0] / 100
y2_meas = data['y2_f'][6000::100, 0] / 100
y3_meas = data['y3_d'][6000::100, 0] / 100
y4_meas = data['y4_d'][6000::100, 0] / 100

https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/QuadTankPack.mop
https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/qt_par_est_data.mat
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u1 = data['u1_d'][6000::100, 0]
u2 = data['u2_d'][6000::100, 0]

# Plot measurements and inputs
plt.close(1)
plt.figure(1)
plt.subplot(2, 2, 1)
plt.plot(t_meas, y3_meas)
plt.title('x3')
plt.grid()
plt.subplot(2, 2, 2)
plt.plot(t_meas, y4_meas)
plt.title('x4')
plt.grid()
plt.subplot(2, 2, 3)
plt.plot(t_meas, y1_meas)
plt.title('x1')
plt.xlabel('t[s]')
plt.grid()
plt.subplot(2, 2, 4)
plt.plot(t_meas, y2_meas)
plt.title('x2')
plt.xlabel('t[s]')
plt.grid()

plt.close(2)
plt.figure(2)
plt.subplot(2, 1, 1)
plt.plot(t_meas, u1)
plt.hold(True)
plt.title('u1')
plt.grid()
plt.subplot(2, 1, 2)
plt.plot(t_meas, u2)
plt.title('u2')
plt.xlabel('t[s]')
plt.hold(True)
plt.grid()
plt.show()

You should now see two plots showing the measurement state profiles and the control input profiles similar to
Figure 6.7 and Figure 6.8.
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Figure 6.7 Measured state profiles.

Figure 6.8 Control inputs used in the identification experiment.

In order to evaluate the accuracy of nominal model parameter values, we simulate the model using the same ini-
tial state and inputs values as in the performed experiment used to obtain the measurement data. First, a matrix
containing the input trajectories is created:

# Build input trajectory matrix for use in simulation



Dynamic Optimization in Python

75

u = N.transpose(N.vstack([t_meas, u1, u2]))

Now, the model can be simulated:

# Simulate model response with nominal parameter values
res_sim = model.simulate(input=(['u1', 'u2'], u),
                         start_time=0., final_time=60.)

The simulation result can now be extracted:

# Load simulation result
x1_sim = res_sim['x1']
x2_sim = res_sim['x2']
x3_sim = res_sim['x3']
x4_sim = res_sim['x4']
t_sim  = res_sim['time']
u1_sim = res_sim['u1']
u2_sim = res_sim['u2']

and then plotted:

# Plot simulation result
plt.figure(1)
plt.subplot(2, 2, 1)
plt.plot(t_sim, x3_sim)
plt.subplot(2, 2, 2)
plt.plot(t_sim, x4_sim)
plt.subplot(2, 2, 3)
plt.plot(t_sim, x1_sim)
plt.subplot(2, 2, 4)
plt.plot(t_sim, x2_sim)

plt.figure(2)
plt.subplot(2, 1, 1)
plt.plot(t_sim, u1_sim, 'r')
plt.subplot(2, 1, 2)
plt.plot(t_sim, u2_sim, 'r')
plt.show()

Figure 6.9 shows the result of the simulation.
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Figure 6.9 Simulation result for the nominal model.

Here, the simulated profiles are given by the green curves. Clearly, there is a mismatch in the response, especially
for the two lower tanks. Think about why the model does not match the data, i.e., which parameters may have
wrong values.

The next step towards solving a parameter estimation problem is to identify which parameters to tune. Typically,
parameters which are not known precisely are selected. Also, the selected parameters need of course affect the mis-
match between model response and data, when tuned. In a first attempt, we aim at decreasing the mismatch for the
two lower tanks, and therefore we select the lower tank outflow areas, a1 and a2, as parameters to optimize. The Op-
timica specification for the estimation problem is contained in the class QuadTankPack.QuadTank_ParEstCasADi:

optimization QuadTank_ParEstCasADi(startTime=0, finalTime=60)

    extends QuadTank(x1(fixed=true), x1_0=0.06255,
                     x2(fixed=true), x2_0=0.06045,
                     x3(fixed=true), x3_0=0.02395,
                     x4(fixed=true), x4_0=0.02325,
                     a1(free=true, min=0, max=0.1e-4),
                     a2(free=true, min=0, max=0.1e-4));
                     
end QuadTank_ParEstCasADi;

We have specified the time horizon to be one minute, which matches the length of the experiment, and that we
want to estimate a1 and a2 by setting free=true for them. Unlike optimal control, the cost function is not specified
using Optimica. This is instead specified from Python, using the ExternalData class and the code below.

# Create external data object for optimization
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Q = N.diag([1., 1., 10., 10.])
data_x1 = N.vstack([t_meas, y1_meas])
data_x2 = N.vstack([t_meas, y2_meas])
data_u1 = N.vstack([t_meas, u1])
data_u2 = N.vstack([t_meas, u2])
quad_pen = OrderedDict()
quad_pen['x1'] = data_x1
quad_pen['x2'] = data_x2
quad_pen['u1'] = data_u1
quad_pen['u2'] = data_u2
external_data = ExternalData(Q=Q, quad_pen=quad_pen)

This will create an objective which is the integral of the squared difference between the measured profiles for x1
and x2 and the corresponding model profiles. We will also introduce corresponding penalties for the two input
variables, which are left as optimization variables. It would also have been possible to eliminate the input variables
from the estimation problem by using the eliminated parameter of ExternalData. See the documentation of
ExternalData for how to do this. Finally, we use a square matrix Q to weight the different components of the
objective. We choose larger weights for the inputs, as we have larger faith in those values.

We are now ready to solve the optimization problem. We first set some options, where we specify the number of
elements (time-discretization grid), the external data, and also provide the simulation with the nominal parameter
values as an initial guess for the solution, which is also used to scale the variables instead of the variables' nominal
attributes (if they have any):

# Set optimization options and optimize
opts = op.optimize_options()
opts['n_e'] = 60 # Number of collocation elements
opts['external_data'] = external_data
opts['init_traj'] = res_sim
opts['nominal_traj'] = res_sim
res = op.optimize(options=opts) # Solve estimation problem

Now, let's extract the optimal values of the parameters a1 and a2 and print them to the console:

# Extract estimated values of parameters
a1_opt = res.initial("a1")
a2_opt = res.initial("a2")

# Print estimated parameter values
print('a1: ' + str(a1_opt*1e4) + 'cm^2')
print('a2: ' + str(a2_opt*1e4) + 'cm^2')

You should get an output similar to:

a1: 0.0266cm^2
a2: 0.0271cm^2

The estimated values are slightly smaller than the nominal values - think about why this may be the case. Also
note that the estimated values do not necessarily correspond to the physically true values. Rather, the parameter
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values are adjusted to compensate for all kinds of modeling errors in order to minimize the mismatch between
model response and measurement data.

Next we plot the optimized profiles:

# Load state profiles
x1_opt = res["x1"]
x2_opt = res["x2"]
x3_opt = res["x3"]
x4_opt = res["x4"]
u1_opt = res["u1"]
u2_opt = res["u2"]
t_opt  = res["time"]

# Plot estimated trajectories
plt.figure(1)
plt.subplot(2, 2, 1)
plt.plot(t_opt, x3_opt, 'k')
plt.subplot(2, 2, 2)
plt.plot(t_opt, x4_opt, 'k')
plt.subplot(2, 2, 3)
plt.plot(t_opt, x1_opt, 'k')
plt.subplot(2, 2, 4)
plt.plot(t_opt, x2_opt, 'k')

plt.figure(2)
plt.subplot(2, 1, 1)
plt.plot(t_opt, u1_opt, 'k')
plt.subplot(2, 1, 2)
plt.plot(t_opt, u2_opt, 'k')
plt.show()

You will see the plot shown in Figure 6.10.
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Figure 6.10 State profiles corresponding to estimated values of a1 and a2.

The profiles corresponding to the estimated values of a1 and a2 are shown in black curves. As can be seen, the
match between the model response and the measurement data has been significantly improved. Is the behavior of
the model consistent with the estimated parameter values?

Nevertheless, there is still a mismatch for the upper tanks, especially for tank 4. In order to improve the match, a
second estimation problem may be formulated, where the parameters a1, a2, a3, a4 are free optimization variables,
and where the squared errors of all four tank levels are penalized. Do this as an exercise!

6.5.3. Investigating optimization progress

This section describes some tools that can be used to investigate the progress of the nonlinear programming solver
on an optimization problem. This information can be useful when debugging convergence problems; some of it
(e.g. dual variables) may also be useful to gain a better understanding of the properties of an optimization problem.
To make sense of the information that can be retrieved, we first give an overview of the collocation procedure that
transcribes the optimization problem into a Nonlinear Program (NLP).

Methods for inspecting progress are divided into low level and high level methods, where the low level methods
provide details of the underlying NLP while the high level methods are oriented towards the optimization problem
as seen in the model formulation.

All functionality related to inspection of solver progress is exposed through the solver object as returned through
the prepare_optimization method. If the optimization has been done through the optimize method instead, the
solver can be obtained as in

res = model.optimize(options=opts)
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solver = res.get_solver()

6.5.3.1. Collocation

To be able to solve a dynamic optimization problem, it is first discretized through collocation. Time is divided
into elements (time intervals), and time varying variables are approximated by a low order polynomial over each
element. Each polynomial piece is described by sample values at a number of collocation points (default 3) within
the element. The result is that each time varying variable in the model is instantiated into one NLP variable for
each collocation point within each element. Some variables may also need to be instantiated at additional points,
such as the initial point which is typically not a collocation point.

The equations in a model are divided into initial equations, DAE equations, path constraints and point constraints.
These equations are also instantiated at different time points to become constraints in the NLP. Initial equations
and point constraints are instantiated only once. DAE equations and path constraints are instantiated at collocation
point of each element and possibly some additional points.

When using the methods described below, each model equation is referred to as a pair (eqtype, eqind). The string
eqtype may be either'initial', 'dae', 'path_eq', 'path_ineq', 'point_eq', or 'point_ineq'. The equation
index eqind gives the index within the given equation type, and is a nonnegative integer less than the number of
equations within the type. The symbolic model equations corresponding to given pairs (eqtype, eqind) can be
retrieved through the get_equations method:

eq      = solver.get_equations(eqtype, 0)     # first equation of type eqtype
eqs     = solver.get_equations(eqtype, [1,3]) # second and fourth equation
all_eqs = solver.get_equations(eqtype)        # all equations of the given type

Apart from the model equations, collocation may also instantiate additional kinds of constraints, such as continuity
constraints to enforce continuity of states between elements and collocation constraints to prescribe the coupling
between states and their derivatives. These constraints have their own eqtype strings. A list of all equation types
that are used in a given model can be retrieved using

eqtypes = solver.get_constraint_types()

6.5.3.2. Inspecting residuals

Given a potential solution to the NLP, the residual of a constraint is a number that specifies how close it is to
being satisfied. For equalities, the residual must be (close to) zero for the solution to be feasible. For inequalities,
the residual must be in a specified range, typically nonpositive. The constraint violation is zero if the residual is
within bounds, and gives the signed distance to the closest bound otherwise; for equality constraints, this is the
same as the residual. Methods for returning residuals actually return the violation by default, but have an option
to get the raw residual.

For a feasible solution, all violations are (almost) zero. If an optimization converges to an infeasible point or does
not have time to converge to a feasible one then the residuals show which constraints the NLP solver was unable
to satisfy. If one problematic constraint comes into conflict with a number of constraints, all of them will likely
have nonzero violations.
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Residual values for a given equation type can be retrieved as a function of time through

r = solver.get_residuals(eqtype)

where r is an array of residuals of shape (n_timepoints, n_equations). There are also optional arguments:
inds gives a subset of equation indices (e.g. inds=[0, 1]), point specifies whether to evaluate residuals at the
optimization solution (point='opt', default) or the initial point (point='init'), and raw specifies whether to
return constraint violations (raw=False, default) or raw residuals (raw=True).

The corresponding time points can be retrieved with

t, i, k = solver.get_constraint_points(eqtype)

where t, i, and k are vectors that give the time, element index, and collocation point index for each instantiation.

To get an overview of which residuals are the largest,

solver.get_residual_norms()

returns a list of equation types sorted by descending residual norm, and

solver.get_residual_norms(eqtype)

returns a list of equation indices of the given type sorted by residual norm.

By default, the methods above work with the unscaled residuals that result directly from collocation. If the
equation_scaling option is turned on, the constraints will be rescaled before they are sent to the NLP solver.
It might be of more interest to look at the size of the scaled residuals, since these are what the NLP solver will
try to make small. The above methods can then be made to work with the scaled residuals instead of the unscaled
by use of the scaled=True keyword argument. The residual scale factors can also be retrieved in analogy to
solver.get_residuals through

scales = solver.get_residual_scales(eqtype)

and an overview of the residual scale factors (or inverse scale factors with inv=True) can be gained from

solver.get_residual_scale_norms()

6.5.3.3. Inspecting the constraint Jacobian

When solving the collocated NLP, the NLP solver typically has to evaluate the Jacobian of the constraint residual
functions. Convergence problems can sometimes be related to numerical problems with the constraint Jacobian.
In particular, Ipopt will never consider a potential solution if there are nonfinite (infinity or not-a-number) entries
in the Jacobian. If the Jacobian has such entries at the initial guess, the optimizer will give up completely.

The constraint Jacobian comes from the NLP. As seen from the original model, it contains the derivatives of the
model equations (and also e.g. the collocation equations) with respect to the model variables at different time
points. If one or several problematic entries are found in the Jacobian, it is often helpful to know the model equation
and variable that they correspond to.
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The set of (model equation, model variable) pairs that correspond to nonfinite entries in the constraint Jacobian
can be printed with

solver.print_nonfinite_jacobian_entries()

or returned with

entries = solver.find_nonfinite_jacobian_entries()

There are also methods to allow to make more custom analyses of this kind. To instead list all Jacobian entries
with an absolute value greater than 10, one can use

J = solver.get_nlp_jacobian() # Get the raw NLP constraint Jacobian as a (sparse)
 scipy.csc_matrix

# Find the indices of all entries with absolute value > 10
J.data = abs(J.data) > 10
c_inds, xx_inds = N.nonzero(J)

entries = solver.get_model_jacobian_entries(c_inds, xx_inds) # Map the indices to equations
 and variables in the model
solver.print_jacobian_entries(entries) # Print them

To get the Jacobian with residual scaling applied, use the scaled_residuals=True option.

6.5.3.4. Inspecting dual variables

Many NLP solvers (including Ipopt) produce a solution that consists of not only the primal variables (the actual
NLP variables), but also one dual variable for each constraint in the NLP. Upon convergence, the value of each
dual variable gives the change in the optimal objective per unit change in the residual. Thus, the dual variables can
give an idea of which constraints are most hindering when it comes to achieving a lower objective value, however,
they must be interpreted in relation to how much it might be possible to change any given constraint.

Dual variable values for a given equation type can be retrieved as a function of time through

d = solver.get_constraint_duals(eqtype)

in analogy to solver.get_residuals. To get constraint duals for the equation scaled problem, use the
scaled=True keyword argument. Just as with get_residuals, the corresponding time points can be retrieved with

t, i, k = solver.get_constraint_points(eqtype)

Besides regular constraints, the NLP can also contain upper and lower bounds on variables. These will correspond
to the Modelica min and max attributes for instantiated model variables. The dual variables for the bounds on a
given model variable var can be retrieved as a function of time through

d = solver.get_bound_duals(var)

The corresponding time points can be retrieved with

t, i, k = solver.get_variable_points(var)
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6.5.3.5. Inspecting low level information about NLP solver progress

The methods described above generally hide the actual collocated NLP and only require to work with model vari-
ables and equations, instantiated at different points. There also exist lower level methods that expose the NLP level
information and its mapping to the original model more directly, and may be useful for more custom applications.
These include

• get_nlp_variables, get_nlp_residuals, get_nlp_bound_duals, and get_nlp_constraint_duals to get
raw vectors from the NLP solution.

• get_nlp_variable_bounds and get_nlp_residual_bounds to get the corresponding bounds used in the NLP.

• get_nlp_residual_scales to get the raw residual scale factors.

• get_nlp_variable_indices and get_nlp_constraint_indices to get mappings from model variables and
equations to their NLP counterparts.

• get_point_time to get the times of collocation points (i, k).

• get_model_variables and get_model_constraints to map from NLP variables and constraints to the corre-
sponding model variables and equations.

The low level constraint Jacobian methods get_nlp_jacobian, get_model_jacobian_entries, and the
print_jacobian_entries method have already been covered in the section about jacobians above.

See the docstring for the respective method for more information.

6.5.4. Eliminating algebraic variables

When the algorithm of this section is used, it is applied on the full DAE, meaning that all of the algebraic variables
and equations are exposed to the numerical discretization and need to be solved by the NLP solver. It is often
beneficial to instead solve some of these algebraic equations in a symbolic pre-processing step. This subsection
describes how this can be done.

JModelica.org has two different frameworks for performing such eliminations. The first one is not described in
this User's Guide, but an example demonstrating its use can be found in pyjmi.examples.ccpp_elimination.
It is implemented as a part of CasADi Interface, whereas the second framework, which is the focus of this sub-
section, is implemented in Python. The elimination framework in CasADi Interface has faster pre-processing, but
has limitations regarding what kind of algebraic variables it can eliminate and also lacks important features such
as tearing and sparsity preservation. For more details on the inner workings of the Python-based framework, see
Chapter 4 in [Mag2016].

6.5.4.1. Basic use

To leave everything in the hands of the framework, simply transfer an optimization problem as per usual and use
the following Python code snippet.
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from pyjmi.symbolic_elimination import BLTOptimizationProblem, EliminationOptions
op = transfer_optimization_problem(class_name, file_name) # Regular compilation
op = BLTOptimizationProblem(op) # Symbolically eliminate algebraic variables

You can then proceed as usual. There is however one caveat. The min and max attributes of eliminated algebraic
variables will not be respected. If this is undesired, these bounds should either be converted into constraints (not
recommended), or the corresponding variables should be marked as ineliminable as described in Section 6.5.4.2.

6.5.4.2. Small example

To demonstrate the use and effects of the framework, we consider the example
pyjmi.examples.elimination_example. Note that this example is intended to be pedagogical, rather than show-
ing the performance gains of the techniques. For a real-world example where the framework offers significant
performance gains, see pyjmi.examples.ccpp_sym_elim, where the solution time is reduced by a factor of 5.

The following artificial Modelica and Optimica code is used in this example.

optimization EliminationExample(finalTime=4,
        objectiveIntegrand=(x1-0.647)^2+x2^2+(u-0.0595)^2+(y1-0.289)^2)
    Real x1(start=1, fixed=true);
    Real x2(start=1, fixed=true);
    Real y1(start=0.3, max=0.41);
    Real y2(start=1);
    Real y3(start=1);
    Real y4(start=1);
    Real y5(start=1);
    input Real u;
equation
    der(x1) = x2;
    der(x2) + y1 + y2 - y3 = u;
    x1*y3 + y2 - sqrt(x1) - 2 = 0;
    2*y1*y2*y4 - sqrt(x1) = 0;
    y1*y4 + sqrt(y3) - x1 - y4 = u;
    y4 - sqrt(y5) = 0;
    y5^2 - x1 = 0;
end EliminationExample;

We start as usual by transferring the optimization problem to CasADi Interface.

op = transfer_optimization_problem("EliminationExample", file_path, compiler_options={})

Next we prepare the symbolic elimination. An important part of this is the manual selection of algebraic variables
that are not allowed to be eliminated. In general, it is recommended to not eliminate the following variables:

• Variables with potentially active bounds (min or max attributes). When variables are eliminated, their min
and max attributes are neglected. This is because many Modelica variables have min and max attributes that
are not intended to constrain the optimization solution. Preserving these bounds during elimination is highly
inefficient. Since there is no way for the toolchain to know which variables may be actively constrained by their
min and max attributes, it is up to the user to provide the names of these variables.
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• Variables that occur in the objective or constraints. Marking these variables as ineliminable is less important,
but can yield performance improvements.

• Variables that lead to numerically unstable pivots. When employing tearing, one runs the risk of causing
numerically unstable computations. This is difficult to predict, but experienced users may know that certain
variables should be selected for tearing to prevent instability, which can be achieved by marking them as inelim-
inable, which does not require a corresponding tearing residual to be chosen. Further details on manual tearing
is described in Section 6.5.4.4.

In our small example, the only thing we have to worry about is y1, which has an upper bound. To mark y1 as
ineliminable, we use the following code.

elim_opts = EliminationOptions()
elim_opts['ineliminable'] = ['y1'] # List of variable names

The elim_opts dictionary object is used to set any other elimination options, which are described in Section 6.5.4.5.
For now, we just enable the option to make a plot of the block-lower triangular (BLT) decomposition of the DAE
incidence matrix, which gives insight regarding the performed eliminations (see [Mag2016]).

elim_opts['draw_blt'] = True
elim_opts['draw_blt_strings'] = True

Now we are ready to symbolically transform the optimization problem.

op = BLTOptimizationProblem(op, elim_opts)

This prints the following simple problem statistics.

System has 5 algebraic variables before elimination and 4 after.
The three largest BLT blocks have sizes 3, 1, and 1.

Since we enable the BLT drawing, we also get the following plot.

Figure 6.11 Simple example BLT decomposition.

The only variable we were able to eliminate was y4. For details on what all the colors mean in the figure, see
Section 6.5.4.3.
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6.5.4.3. The many colors of symbolic elimination

In the plots generated by enabling the option draw_blt, linear (with respect to the block variables) incidences are
marked by green dots, and nonlinear incidences are marked by red dots. There is no distinction made between linear
and nonlinear incidences outside of the diagonal blocks. Hence, such incidences are marked by black dots. Torn
blocks are marked by red edges. Variables, and their respective matched equations, that have been user-specified
as actively bounded (and hence are not eliminated) are marked by orange edges. State variable derivatives (which
are not eliminated) and their respective matched equations are marked by blue edges. Blue edges are also used to
mark non-scalar blocks that have not been torn. Variable–equation pairs along the diagonal that are not sparsity
preserving are marked by yellow edges. The remaining variable–equation pairs along the diagonal are the ones
used for elimination, which are marked by green edges.

6.5.4.4. Tearing

By default, tearing is not used in the elimination. The use of tearing enables the elimination of variables in algebraic
loops. In this example, we can also eliminate y2 through tearing. Tearing can either be done automatically or
manually. Manual tearing is performed on the OptimizationProblem object, prior to symbolic transformation. To
eliminate y2, we select the other variables in the algebraic loop for y2—that is, y3 and y1—as tearing variables
as follows.

op.getVariable('y1').setTearing(True)
op.getVariable('y3').setTearing(True)

We also have to select tearing residuals. This is less convenient, as there is no straightforward way to identify an
equation. We can either manually inspect the equations obtained from op.getDaeEquations(), or search through
the string representations of all of them. We will adopt the second approach.

for eq in op_manual.getDaeEquations():
    eq_string = eq.getResidual().getRepresentation()
    if 'y1)*y2)*y4)' in eq_string or 'y1*y4' in eq_string:
        eq.setTearing(True)

Once the tearing selection is finished, the symbolic transformation can be performed as before by instantiating
BLTOptimizationProblem.

For this example, we can get the same result by automatic tearing, which is enabled during compilation. We pre-
viously used compiler_options={}. By instead using

compiler_options = {'equation_sorting': True, 'automatic_tearing': True}

tearing will be performed automatically. This will mark the same variables and equations as tearing variables as
we just did manually. Hence, it may be a good idea to first perform tearing automatically and then make any
needed changes manually, rather than doing manual tearing from scratch. Automatic tearing will yield satisfactory
performance for most problems, so manual tearing is only recommended for experts. For this example, we can also
eliminate y1 through manual tearing, but since we have a bound on y1, this is not recommended anyway.
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6.5.4.5. Available options

The standard elimination options are listed below. All of these have been explained in the above subsections, except
for the last two related to sparsity preservation. A higher density tolerance will allow for the elimination of more
algebraic variables, but the resulting DAE will be more dense. This parameter thus allows a trade-off between the
sparsity and dimension of the DAE, both of which affect the performance of the optimization.

Table 6.4 Standard options for the symbolic elimination.

Option Default Description

draw_blt False Whether to plot the BLT form.

draw_blt_strings False Whether to annotate plot of the BLT form with strings
for variables and equations.

tearing True Whether to tear algebraic loops.

ineliminable [] List of names of variables that should not be eliminat-
ed. Particularly useful for variables with bounds.

dense_measure 'lmfi' Density measure for controlling density in causal-
ized system. Possible values: ['lmfi', 'Markowitz'].
Markowitz uses the Markowitz criterion and lmfi uses
local minimum fill-in to estimate density.

dense_tol 15 Tolerance for controlling density in causalized system.
Possible values: [-inf, inf]

The below table lists the experimental and debugging elimination options, which should not be used by the typical
user.

Table 6.5 Experimental and debugging options for the symbolic elimination.

Option Default Description

plots False Whether to plot intermediate results for matching and
component computation.

solve_blocks False Whether to factorize coefficient matrices in non-scalar,
linear blocks.

solve_torn_linear_blocksFalse Whether to solve causalized equations in torn blocks,
rather than doing forward substitution as for nonlinear
blocks.

inline True Whether to inline function calls (such as creation of
linear systems).

linear_solver "symbolicqr" Which linear solver to use. See http://
casadi.sourceforge.net/api/html/d8/d6a/
classcasadi_1_1LinearSolver.html for possibilities
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Option Default Description

closed_form False Whether to create a closed form expression for residu-
als and solutions. Disables computations.

inline_solved False Whether to inline solved expressions in the closed
form expressions (only applicable if closed_form ==
True).

6.6. Derivative-Free Model Calibration of FMUs

Figure 6.12 The Furuta pendulum.

This tutorial demonstrates how to solve a model calibration problem using an algorithm that can be applied to
Functional Mock-up Units. The model to be calibrated is the Furuta pendulum shown in Figure 6.12. The Furuta
pendulum consists of an arm rotating in the horizontal plane and a pendulum which is free to rotate in the verti-
cal plane. The construction has two degrees of freedom, the angle of the arm, , and the angle of the pendulum,

. Copy the file $JMODELICA_HOME/Python/pyjmi/examples/files/FMUs/Furuta.fmu to your working direc-
tory. Note that the Furuta.fmu file is currently only supported on Windows. Measurement data for  and 
is available in the file $JMODELICA_HOME/Python/pyjmi/examples/files/FurutaData.mat. Copy this file to
your working directory as well. These measurements will be used for the calibration. Open a text file, name it
furuta_par_est.py and enter the following imports:

from scipy.io.matlab.mio import loadmat
import matplotlib.pyplot as plt
import numpy as N
from pyfmi import load_fmu
from pyjmi.optimization import dfo
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Then, enter code for opening the data file and extracting the measurement time series:

# Load measurement data from file
data = loadmat('FurutaData.mat',appendmat=False)
# Extract data series
t_meas = data['time'][:,0]
phi_meas = data['phi'][:,0]
theta_meas = data['theta'][:,0]

Now, plot the measurements:

# Plot measurements
plt.figure (1)
plt.clf()
plt.subplot(2,1,1)
plt.plot(t_meas,theta_meas,label='Measurements')
plt.title('theta [rad]')
plt.legend(loc=1)
plt.grid ()
plt.subplot(2,1,2)
plt.plot(t_meas,phi_meas,label='Measurements')
plt.title('phi [rad]')
plt.legend(loc=1)
plt.grid ()
plt.show ()

This code should generate Figure 6.13 showing the measurements of  and .

Figure 6.13 Measurements of  and  for the Furuta pendulum.

To investigate the accuracy of the nominal parameter values in the model, we shall now simulate the model:
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# Load model
model = load_fmu("Furuta.fmu")
# Simulate model response with nominal parameters
res = model.simulate(start_time=0.,final_time=40)
# Load simulation result
phi_sim = res['armJoint.phi']
theta_sim = res['pendulumJoint.phi']
t_sim = res['time']

Then, we plot the simulation result:

# Plot simulation result
plt.figure (1)
plt.subplot(2,1,1)
plt.plot(t_sim,theta_sim,'--',label='Simulation nominal parameters')
plt.legend(loc=1)
plt.subplot(2,1,2)
plt.plot(t_sim,phi_sim,'--',label='Simulation nominal parameters')
plt.xlabel('t [s]')
plt.legend(loc=1)
plt.show ()

Figure 6.14 shows the simulation result together with the measurements.

Figure 6.14 Measurements and model simulation result for  and  when using nominal parameter values in the
Furuta pendulum model.

As can be seen, the simulation result does not quite agree with the measurements. We shall now attempt to calibrate
the model by estimating the two following model parameters:
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• : arm friction coefficient (nominal value 0.012)

• : pendulum friction coefficient (nominal value 0.002)

The calibration will be performed using the Nelder-Mead simplex optimization algorithm. The objective function,
i.e. the function to be minimized, is defined as:

where , i = 1,2,...,M, are the measurement time points and  is the parameter vector.  and 

are the measurements of  and , respectively, and  and  are the corresponding simulation results. Now,
add code defining a starting point for the algorithm (use the nominal parameter values) as well as lower and upper
bounds for the parameters:

# Choose starting point
x0 = N.array([0.012,0.002])*1e3
# Choose lower and upper bounds (optional)
lb = N.zeros (2)
ub = (x0 + 1e-2)*1e3

Note that the values are scaled with a factor . This is done to get a more appropriate variable size for the algorithm
to work with. After the optimization is done, the obtained result is scaled back again. In this calibration problem,
we shall use multiprocessing, i.e., parallel execution of multiple processes. All objective function evaluations in
the optimization algorithm will be performed in separate processes in order to save memory and time. To be able
to do this we need to define the objective function in a separate Python file and provide the optimization algorithm
with the file name. Open a new text file, name it furuta_cost.py and enter the following imports:

from pyfmi import load_fmu
from pyjmi.optimization import dfo
from scipy.io.matlab.mio import loadmat
import numpy as N

Then, enter code for opening the data file and extracting the measurement time series:

# Load measurement data from file
data = loadmat('FurutaData.mat',appendmat=False)
# Extract data series
t_meas = data['time'][:,0]
phi_meas = data['phi'][:,0]
theta_meas = data['theta'][:,0]

Next, define the objective function, it is important that the objective function has the same name as the file it is
defined in (except for .py):
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# Define the objective function
def furuta_cost(x):
    # Scale down the inputs x since they are scaled up
    # versions of the parameters (x = 1e3*[param1,param2])
    armFrictionCoefficient = x[0]/1e3
    pendulumFrictionCoefficient = x[1]/1e3
    # Load model
    model = load_fmu('../Furuta.fmu')
    # Set new parameter values into the model
    model.set('armFriction',armFrictionCoefficient)
    model.set('pendulumFriction',pendulumFrictionCoefficient)
    # Simulate model response with new parameter values
    res = model.simulate(start_time=0.,final_time=40)
    # Load simulation result
    phi_sim = res['armJoint.phi']
    theta_sim = res['pendulumJoint.phi']
    t_sim = res['time']
    # Evaluate the objective function
    y_meas = N.vstack((phi_meas ,theta_meas))
    y_sim = N.vstack((phi_sim,theta_sim))
    obj = dfo.quad_err(t_meas,y_meas,t_sim,y_sim)  
    return obj

This function will later be evaluated in temporary sub-directories to your working directory which is why the
string '../' is added to the FMU name, it means that the FMU is located in the parent directory. The Python
function dfo.quad_err evaluates the objective function. Now we can finally perform the actual calibration. Solve
the optimization problem by calling the Python function dfo.fmin in the file named furuta_par_est.py:

# Solve the problem using the Nelder-Mead simplex algorithm
x_opt,f_opt,nbr_iters,nbr_fevals,solve_time = dfo.fmin("furuta_cost.py",
xstart=x0,lb=lb,ub=ub,alg=1,nbr_cores=4,x_tol=1e-3,f_tol=1e-2)

The input argument alg specifies which algorithm to be used, alg=1 means that the Nelder-Mead simplex algo-
rithm is used. The number of processor cores (nbr_cores) on the computer used must also be provided when
multiprocessing is applied. Now print the optimal parameter values and the optimal function value:

# Optimal point (don't forget to scale down)
[armFrictionCoefficient_opt, pendulumFrictionCoefficient_opt] = x_opt/1e3
# Print optimal parameter values and optimal function value
print 'Optimal parameter values:'
print 'arm friction coeff = ' + str(armFrictionCoefficient_opt)
print 'pendulum friction coeff = ' + str(pendulumFrictionCoefficient_opt)
print 'Optimal function value: ' + str(f_opt)

This should give something like the following printout:

Optimal parameter values:
arm friction coeff = 0.00997223923413
pendulum friction coeff = 0.000994473020199
Optimal function value: 1.09943830585



Dynamic Optimization in Python

93

Then, we set the optimized parameter values into the model and simulate it:

# Load model
model = load_fmu("Furuta.fmu")
# Set optimal parameter values into the model
model.set('armFriction',armFrictionCoefficient_opt)
model.set('pendulumFriction',pendulumFrictionCoefficient_opt)
# Simulate model response with optimal parameter values
res = model.simulate(start_time=0.,final_time=40)
# Load simulation result
phi_opt = res['armJoint.phi']
theta_opt = res['pendulumJoint.phi']
t_opt = res['time']

Finally, we plot the simulation result:

# Plot simulation result
plt.figure (1)
plt.subplot(2,1,1)
plt.plot(t_opt,theta_opt,'-.',linewidth=3,
label='Simulation optimal parameters')
plt.legend(loc=1)
plt.subplot(2,1,2)
plt.plot(t_opt,phi_opt,'-.',linewidth=3,
label='Simulation optimal parameters')
plt.legend(loc=1)
plt.show ()

This should generate the Figure 6.15. As can be seen, the agreement between the measurements and the simulation
result has improved considerably. The model has been successfully calibrated.
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Figure 6.15 Measurements and model simulation results for  and  with nominal and optimal parameters in the
model of the Furuta pendulum.
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Chapter 7. Graphical User Interface
for Visualization of Results
7.1. Plot GUI
JModelica.org comes with a graphical user interface (GUI) for displaying simulation and / or optimization results.
The GUI supports result files generated by JModelica.org and Dymola (both binary and textual formats).

The GUI is located in the module (pyjmi/pyfmi).common.plotting.plot_gui and can be started by Windows
users by selecting the shortcut located in the start-menu under JModelica.org. The GUI can also be started by typing
the following commands in a Python shell:

from pyjmi.common.plotting import plot_gui   # or pyfmi.common.plotting import plot_gui
plot_gui.startGUI()

Note that the GUI requires the Python package wxPython which is installed by default in the Python version that
comes with JModelica.org.

Figure 7.1 Overview of JModelica.org Plot GUI

7.1.1. Introduction

An overview of the GUI is shown in Figure 7.1. As can be seen, the plot figures are located to the right and
can contain multiple figures in various configurations. The left is dedicated to show the loaded result file(s) and
corresponding variables together with options for filtering time-varying variables and parameters/constants.

http://www.wxpython.org/


Graphical User Interface
for Visualization of Results

96

Loading a result file is done using the File menu selection Open which opens a file dialog where either textual
(.txt) results or binary (.mat) results can be chosen. The result is then loaded into a tree structure which enables
the user to easily browse between components in a model, see Figure 7.2 . Multiple results can be loaded either
simultaneously or separately by using the File menu option Open repeatedly.

Figure 7.2 A result file has been loaded.

Displaying trajectories is done by simply checking the box associated with the variable of interest, see Figure 7.3.
Removing a trajectory follows the same principle.

Figure 7.3 Plotting a trajectory.
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A result can also be removed from the tree view by selecting an item in the tree and by pressing the delete key.

7.1.2. Edit Options

The GUI allows a range of options, see Figure 7.4, related to how the trajectories are displayed such as line width,
color and draw style. Information about a plot can in addition be defined by setting titles and labels. Options related
to the figure can be found under the Edit menu as well as adding more plot figures.

Figure 7.4 Figure Options.

Under Axis/Labels, see Figure 7.5, options such as defining titles and labels in both X and Y direction can be
found together with axis options.
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Figure 7.5 Figure Axis and Labels Options.

Under Lines/Legends, options for specifying specific line labels and line styles can be found, see Figure 7.6.
The top drop-down list contains all variables related to the highlighted figure and the following input fields down
to Legend are related to the chosen variable. The changes take effect after the button OK has been pressed. For
changing multiple lines in the same session, the Apply button should be used.

Figure 7.6 Figure Lines and Legends options.

Additional figures can be added from the Add Plot command in the Edit menu. In Figure 7.7 an additional figure
have been added.
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Figure 7.7 An additional plot has been added.

The figures can be positioned by choosing a figure tab and moving it to one of the borders of the GUI. In Figure 7.8
"Plot 1" have been dragged to the left side of the figure and a highlighted area has emerged which shows where
"Plot 1" will be positioned. In Figure 7.9 the result is shown.

Figure 7.8 Moving Plot Figure.
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Figure 7.9 GUI after moving the plot window.

If we are to add more figures, an increasingly complex figure layout can be created as is shown in Figure 7.10
where figures also have been dragged to other figure headers.

Figure 7.10 Complex Figure Layout.
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7.1.3. View Options

Options for interacting with a figure and changing the display can be found under the View menu. The options
are to show/hide a grid, either to use the mouse to move the plot or to use the mouse for zooming and finally to
resize the plot to fit the selected variables.

Figure 7.11 Figure View Options.

Moving a figure with the move option is performed by simply pressing the left mouse button and while still holding
down the button, dragging the plot to the area of interest. A zoom operation is performed in a similar fashion.

7.1.4. Example

Figure 7.12 shows an example of how the GUI can be used to plot four different plots with different labels. Some
of the lines have also been modified in width and in line style. A grid is also shown.
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Figure 7.12 Multiple figure example.
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Chapter 8. The Optimica Language
Extension
In this chapter, the Optimica extension will be presented and informally defined. The Optimica extension in de-
scribed in detail in [Jak2008a], where additional motivations for introducing Optimica can be found. The presen-
tation will be made using the following dynamic optimization problem, based on a double integrator system, as
an example:

subject to the dynamic constraint

and

In this problem, the final time, tf, is free, and the objective is thus to minimize the time it takes to transfer the state
of the double integrator from the point (0,0) to (1,0), while respecting bounds on the velocity v(t) and the input
u(t). A Modelica model for the double integrator system is given by:

model DoubleIntegrator
  Real x(start=0);
  Real v(start=0);
  input Real u;
equation
  der(x)=v;
  der(v)=u;
end DoubleIntegrator;

In summary, the Optimica extension consists of the following elements:

• A new specialized class: optimization

• New attributes for the built-in type Real: free and initialGuess

• A new function for accessing the value of a variable at a specified time instant

• Class attributes for the specialized class optimization: objective, startTime, finalTime and static
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• A new section: constraint

• Inequality constraints

8.1. A new specialized class: optimization
A new specialized class, called optimization, in which the proposed Optimica-specific constructs are valid is
supported by Optimica. This approach is consistent with the Modelica language, since there are already several
other specialized classes, e.g., record, function and model. By introducing a new specialized class, it also be-
comes straightforward to check the validity of a program, since the Optimica-specific constructs are only valid in-
side an optimization class. The optimization class corresponds to an optimization problem, static or dynamic,
as specified above. Apart from the Optimica-specific constructs, an optimization class can also contain compo-
nent and variable declarations, local classes, and equations.

It is not possible to declare components from optimization classes in the current version of Optimica. Rather,
the underlying assumption is that an optimization class defines an optimization problem, that is solved off-
line. An interesting extension would, however, be to allow for optimization classes to be instantiated. With this
extension, it would be possible to solve optimization problems, on-line, during simulation. A particularly interesting
application of this feature is model predictive control, which is a control strategy that involves on-line solution of
optimization problems during execution.

As a starting-point for the formulation of the optimization problem consider the optimization class:

optimization DIMinTime
  DoubleIntegrator di;
  input Real u = di.u;
end DIMinTime;

This class contains only one component representing the dynamic system model, but will be extended in the fol-
lowing to incorporate also the other elements of the optimization problem.

8.2. Attributes for the built in class Real
In order to superimpose information on variable declarations, two new attributes are introduced for the built-in type
Real. Firstly, it should be possible to specify that a variable, or parameter, is free in the optimization. Modelica
parameters are normally considered to be fixed after the initialization step, but in the case of optimization, some
parameters may rather be considered to be free. In optimal control formulations, the control inputs should be marked
as free, to indicate that they are indeed optimization variables. For these reasons, a new attribute for the built-in
type Real, free, of boolean type is introduced. By default, this attribute is set to false.

Secondly, an attribute, initialGuess, is introduced to enable the user to provide an initial guess for variables and
parameters. In the case of free optimization parameters, the initialGuess attribute provides an initial guess to
the optimization algorithm for the corresponding parameter. In the case of variables, the initialGuess attribute
is used to provide the numerical solver with an initial guess for the entire optimization interval. This is particularly
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important if a simultaneous or multiple-shooting algorithm is used, since these algorithms introduce optimization
variables corresponding to the values of variables at discrete points over the interval. Note that such initial guesses
may be needed both for control and state variables. For such variables, however, the proposed strategy for providing
initial guesses may sometimes be inadequate. In some cases, a better solution is to use simulation data to initialize
the optimization problem. This approach is also supported by the Optimica compiler. In the double integrator
example, the control variable u is a free optimization variable, and accordingly, the free attribute is set to true.
Also, the initialGuess attribute is set to 0.0.

optimization DIMinTime
  DoubleIntegrator di(u(free=true,
                        initialGuess=0.0));
  input Real u = di.u;
end DIMinTime;

8.3. A Function for accessing instant values of a vari-
able
An important component of some dynamic optimization problems, in particular parameter estimation problems
where measurement data is available, is variable access at discrete time instants. For example, if a measurement data
value, yi, has been obtained at time ti, it may be desirable to penalize the deviation between yi and a corresponding
variable in the model, evaluated at the time instant ti. In Modelica, it is not possible to access the value of a variable
at a particular time instant in a natural way, and a new construct therefore has to be introduced.

All variables in Modelica are functions of time. The variability of variables may be different-some are continuously
changing, whereas others can change value only at discrete time instants, and yet others are constant. Nevertheless,
the value of a Modelica variable is defined for all time instants within the simulation, or optimization, interval.
The time argument of variables are not written explicitly in Modelica, however. One option for enabling access
to variable values at specified time instants is therefore to associate an implicitly defined function with a variable
declaration. This function can then be invoked by the standard Modelica syntax for function calls, y(t_i). The
name of the function is identical to the name of the variable, and it has one argument; the time instant at which the
variable is evaluated. This syntax is also very natural since it corresponds precisely to the mathematical notation of
a function. Note that the proposed syntax y(t_i) makes the interpretation of such an expression context dependent.
In order for this construct to be valid in standard Modelica, y must refer to a function declaration. With the proposed
extension, y may refer either to a function declaration or a variable declaration. A compiler therefore needs to
classify an expression y(t_i) based on the context, i.e., what function and variable declarations are visible. This
feature of Optimica is used in the constraint section of the double integrator example, and is described below.

8.4. Class attributes
In the optimization formulation above, there are elements that occur only once, i.e., the cost function and the opti-
mization interval. These elements are intrinsic properties of the respective optimization formulations, and should
be specified, once, by the user. In this respect the cost function and optimization interval differ from, for example,
constraints, since the user may specify zero, one or more of the latter.
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In order to encode these elements, class attributes are introduced. A class attribute is an intrinsic element of a
specialized class, and may be modified in a class declaration without the need to explicitly extend from a built-
in class. In the Optimica extension, four class attributes are introduced for the specialized class optimization.
These are objective, which defines the cost function, startTime, which defines the start of the optimization
interval, finalTime, which defines the end of the optimization interval, and static, which indicates whether the
class defines a static or dynamic optimization problem. The proposed syntax for class attributes is shown in the
following optimization class:

optimization DIMinTime (
        objective=finalTime,
        startTime=0,
        finalTime(free=true,initialGuess=1))
 DoubleIntegrator di(u(free=true,
                       initialGuess=0.0));
 input Real u = di.u;
end DIMinTime;

The default value of the class attribute static is false, and accordingly, it does not have to be set in this case. In
essence, the keyword extends and the reference to the built-in class have been eliminated, and the modification
construct is instead given directly after the name of the class itself. The class attributes may be accessed and
modified in the same way as if they were inherited.

8.5. Constraints
Constraints are similar to equations, and in fact, a path equality constraint is equivalent to a Modelica equation.
But in addition, inequality constraints, as well as point equality and inequality constraints should be supported. It is
therefore natural to have a separation between equations and constraints. In Modelica, initial equations, equations,
and algorithms are specified in separate sections, within a class body. A reasonable alternative for specifying
constraints is therefore to introduce a new kind of section, constraint. Constraint sections are only allowed inside
an optimization class, and may contain equality, inequality as well as point constraints. In the double integrator
example, there are several constraints. Apart from the constraints specifying bounds on the control input u and
the velocity v, there are also terminal constraints. The latter are conveniently expressed using the mechanism for
accessing the value of a variable at a particular time instant; di.x(finalTime)=1 and di.v(finalTime)=0. In
addition, bounds may have to be specified for the finalTime class attribute. The resulting optimization formulation
may now be written:

optimization DIMinTime (
    objective=finalTime,
    startTime=0,
    finalTime(free=true,initialGuess=1))
 DoubleIntegrator di(u(free=true,
                       initialGuess=0.0));
 input Real u = di.u; 
constraint
 finalTime>=0.5;
 finalTime<=10;
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 di.x(finalTime)=1;
 di.v(finalTime)=0;
 di.v<=0.5;
 di.u>=-1; di.u<=1;
end DIMinTime;

The Optimica specification can be translated into executable format and solved by a numerical solver, yielding
the result seen in Figure 8.1.

Figure 8.1 Optimization result
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Chapter 9. Limitations
This page lists the current limitations of the JModelica.org platform.

The Modelica compliance of the front-end is limited; the following features are currently not supported:

• Support for partial function calls is limited.

• The following built-in functions are not supported:

terminal()

• The following built-in functions are only supported in FMUs:

ceil(x) integer(x) reinit(x, expr)

div(x,y) mod(x,y) sample(start,interval)

edge(b) pre(y) semiLinear(...)

floor(x) rem(x,y) sign(v)

initial() delay(...) spatialDistribution(...)

• The following operators are only partially supported:

homotopy()

• The following annotations are not supported:

version arrayLayout obsolete

uses HideResult unassignedMessage

inverse

• The following annotations are limited:

• The zeroDerivative annotation is treated the same as the noDerivative annotation.

• There is limited support for using arrays in record arrays.

• There is limited support for Q-identifiers (e.g. component names starting with a single quote)

• No support for non-parameter array size declarations. This means that all array size declarations must be of
constant or parameter variability.
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• Index reduction fails in some complex cases. It is possible to work around this by setting the stateSelect
attribute manually.

In the Optimica front-end the following constructs are not supported:

• Annotations for transcription information.

The following limitations apply to optimization using CasADi-based collocation with JModelica.org:

• Incomplete support for the Integer and Boolean types: To the extent that they are supported, they are treated
more or less like reals.

• No support for String and enumeration types.

• Attributes with any name can be set on any type of variable.

• The property of whether an optimization problem has free or fixed time horizon cannot be changed after com-
pilation.

The following limitations apply to FMUs compiled with JModelica.org:

• The dependenciesKind attribute in the XML file for FMU 2.0 is not generated.

• Directional derivatives are known to have limitations in some cases.

• Asynchronous simulation is not supported.

• FMU states (set, get and serialize) are not supported.
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Appendix A. Compiler options
A.1. List of options that can be set in compiler

Table A.1 Compiler options

Option Option type /
Default value

Description

automatic_tearing boolean / true If enabled, then automatic tearing of equation systems is
performed.

check_inactive_ contition-

als

boolean / false If enabled, check for errors in inactive conditional com-
ponents when compiling. When using check mode, this is
always done.

component_names_in_errors boolean / true If enabled, the compiler will include the name of the
component where the error was found, if applicable.

convert_free_dependent_

parameters_to_algebraics

boolean / true If enabled, then free dependent parameters are converted
to algebraic variables.

copy_source_files_to_fmu boolean / false If enabled, the generated source files will be copied to the
FMU.

divide_by_vars_in_tearing boolean / false If enabled, a less restrictive strategy is used for solving
equations in the tearing algorithm. Specifically, division
by parameters and variables is permitted, by default no
such divisions are made during tearing.

enable_block_function_ ex-

traction

boolean / false Looks for function calls in blocks. If a function call in a
block doesn't depend on the block in question, it is ex-
tracted from the block.

event_output_vars boolean / false If enabled, output variables are generated for each gener-
ated event.

external_constant_ evalua-

tion

integer / 5000 Time limit (ms) when evaluating constant calls to exter-
nal functions during compilation. 0 indicates no evalua-
tion. -1 indicates no time limit.

filter_warnings string / '' A comma separated list of warning identifiers that should
be omitted from the logs.

generate_html_diagnostics boolean / false If enabled, model diagnostics are generated in HTML
format. This includes the flattened model, connection
sets, alias sets and BLT form.
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Option Option type /
Default value

Description

generate_mof_files boolean / false If enabled, then flat model before and after transforma-
tions will be generated.

generate_only_initial_ sys-

tem

boolean / false If enabled, then only the initial equation system will be
generated.

halt_on_warning boolean / false If enabled, compilation warnings will cause compilation
to abort.

index_reduction boolean / true If enabled, then index reduction is performed for high-in-
dex systems.

init_nonlinear_solver string / 'kin-
sol'

Decides which nonlinear equation solver to use in the ini-
tial system. Alternatives are 'kinsol or 'minpack'.

nonlinear_solver string / 'kin-
sol'

Decides which nonlinear equation solver to use. Alterna-
tives are 'kinsol or 'minpack'.

relational_time_events boolean / true If enabled, then relational operators are allowed to gener-
ate time events.

state_initial_equations boolean / false If enabled, the compiler ignores initial equations in the
model and adds parameters for controlling intitial values
of states.Default is false.

state_start_values_fixed boolean / false If enabled, then initial equations are generated automat-
ically for differentiated variables even though the fixed
attribute is equal to fixed. Setting this option to true is,
however, often practical in optimization problems.

tearing_division_tolerance real / 1.0E-10 The minimum allowed size for a divisor constant when
performing tearing.

allow_non_scalar_nested_

blocks

boolean / true If disabled, an error is given if there are nested blocks
which are non-scalar.

automatic_add_initial_

equations

boolean / true If enabled, then additional initial equations are added to
the model based equation matching. Initial equations are
added for states that are not matched to an equation.

c_compiler string / 'gcc' The C compiler to use to compile generated C code.

cc_extra_flags string / ':O1' Optimization level for c-code compilation

cc_extra_flags_applies_to string / 'func-
tions'

Parts of c-code to compile with extra compiler flags spec-
ified by ccompiler_extra_flags

cc_split_element_limit integer / 1000 When generating code for large systems, the code is split
into multiple functions and files for performance reasons.
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Option Option type /
Default value

Description

This option controls how many scalar elements can be
evaluated by a function. Value less than 1 indicates no
split.

cc_split_function_limit integer / 20 When generating code for large systems, the code is split
into multiple functions and files for performance reasons.
This option controls how many functions can be generat-
ed in a file. Value less than 1 indicates no split.

common_subexp_elim boolean / true If enabled, the compiler performs a global analysis on the
equation system and extract identical function calls into
common equations.

diagnostics_limit integer / 500 This option specifies the equation system size at which
the compiler will start to reduce model diagnostics. This
option only affects diagnostic output that grows faster
than linear with the number of equations.

dynamic_states boolean / true If enabled, dynamic states will be calculated and generat-
ed.

eliminate_alias_constants boolean / true If enabled, then alias constants are eliminated from the
model.

eliminate_alias_parameters boolean / true If enabled, then alias parameters are eliminated from the
model.

eliminate_alias_variables boolean / true If enabled, then alias variables are eliminated from the
model.

eliminate_linear_equations boolean / true If enabled, then equations with linear sub expressions are
substituted and eliminated.

enable_structural_ diagno-

sis

boolean / true If enabled, structural error diagnosis based on matching
of equations to variables is used.

enable_variable_scaling boolean / false If enabled, then the 'nominal' attribute will be used to
scale variables in the model.

equation_sorting boolean / true If enabled, then the equation system is separated into
minimal blocks that can be solved sequentially.

export_functions boolean / false Export used Modelica functions to generated C code in a
manner that is compatible with the external C interface in
the Modelica Language Specification.

export_functions_vba boolean / false Create VBA-compatible wrappers for exported functions.
Requires the option export_functions.
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Option Option type /
Default value

Description

expose_temp_vars_in_fmu boolean / false If enabled, then all temporary variables are exposed in
the FMU XML and accessible as ordinary variables

external_constant_

evaluation_max_proc

integer / 10 The maximum number of processes kept alive for eval-
uation of external functions during compilation. This
speeds up evaluation of functions using external objects
during compilation.If less than 1, no processes will be
kept alive, i.e. this feature is turned off.

function_incidence_ compu-

tation

string / 'none' Controls how matching algorithm computes incidences
for function call equations. Possible values: 'none',
'all'. With 'none' all outputs are assumed to depend
on all inputs. With 'all' the compiler analyses the func-
tion to determine dependencies.

generate_runtime_option_

parameters

boolean / true If enabled, generate parameters for runtime options.
Should always be true for normal compilation.

homotopy_type string / 'actu-
al'

Decides how homotopy expressions are interpreted dur-
ing compilation. Can be set to either 'simplified' or
'actual' which will compile the model using only the
simplified or actual expressions of the homotopy() opera-
tor.

ignore_within boolean / false If enabled, ignore within clauses both when reading input
files and when error-checking.

inline_functions string / 'triv-
ial'

Controlles what function calls are inlined. 'none' - no
function calls are inlined. 'trivial' - inline function
calls that will not increase the number of variables in the
system. 'all' - inline all function calls that are possible.

local_iteration_in_tearing string / 'off' This option controls whether equations can be solved lo-
cal in tearing. Possible options are: 'off', local itera-
tions are not used (default). 'annotation', only equa-
tions that are annotated are candidates. 'all', all equa-
tions are candidates.

max_n_proc integer / 4 The maximum number of processes used during c-code
compilation.

normalize_minimum_time_

problems

boolean / true If enabled, then minimum time optimal control problems
encoded in Optimica are converted to fixed interval prob-
lems by scaling of the derivative variables. Has no effect
for Modelica models.
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Option Option type /
Default value

Description

propagate_derivatives boolean / true If enabled, the compiler will try to replace ordinary vari-
able references with derivative references. This is done
by first finding equations on the form x = der(y). If possi-
ble, uses of x will then be replaced with der(x).

variability_propagation boolean / true If enabled, the compiler performs a global analysis on the
equation system and reduces variables to constants and
parameters where applicable.

variability_propagation_

algorithms

boolean / false If enabled, the compiler includes modelica algorithms in
variability propagation.

variability_propagation_

external

boolean / true If enabled, the compiler allows external constant evalua-
tion during variability propagation.

variability_propagation_

initial

boolean / true If enabled, the compiler performs a global analysis on the
initial equation system and reduces initial parameters to
constants and parameters where applicable.

variability_propagation_

initial_partial

boolean / false If enabled, the compiler allows partial constant evalua-
tion of function calls in initial equations during variabili-
ty propagation.

write_iteration_variables_

to_file

boolean / false If enabled, two text files containing one iteration variable
name per row is written to disk. The files contains the it-
eration variables for the DAE and the DAE initialization
system respectively. The files are output to the resource
directory of the FMU.

write_tearing_pairs_to_

file

boolean / false If enabled, two text files containing tearing pairs is writ-
ten to disk. The files contains the tearing pairs for the
DAE and the DAE initialization system respectively. The
files are output to the working directory.

algorithms_as_functions boolean / false If enabled, convert algorithm sections to function calls.

disable_smooth_events boolean / false If enabled, no events will be generated for smooth opera-
tor if order equals to zero.

event_indicator_scaling boolean / false If enabled, event indicators will be scaled with nominal
heuristics

generate_event_switches boolean / true If enabled, event generating expressions generates
switches in the c-code. Setting this option to false can
give unexpected results.
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Option Option type /
Default value

Description

generate_sparse_block_

jacobian_threshold

integer / 100 Threshold for when a sparse Jacobian should be generat-
ed. If the number of torn variables is less than the thresh-
old a dense Jacobian is generated.

no_loop_unrolling_in_ func-

tions

boolean / false Feature option. If enabled, loops in functions are not un-
rolled. Better compilation speed for assignments of large
arrays.

cs_rel_tol real / 1.0E-6 Tolerance for the adaptive solvers in the Co-Simulation
case.

cs_solver integer / 0 Specifies the internal solver used in Co-Simulation. 0 -
CVode, 1 - Euler.

cs_step_size real / 0.001 Step-size for the fixed-step solvers in the Co-Simulation
case.

enforce_bounds boolean / true If enabled, min / max bounds on variables are enforced in
the equation blocks.

iteration_variable_scaling integer / 1 Scaling mode for the iteration variables in the equation
block solvers: 0 - no scaling, 1 - scaling based on nomi-
nals, 2 - utilize heuristic to guess nominal based on min,
max, start, etc.

log_level integer / 3 Log level for the runtime: 0 - none, 1 - fatal error, 2 - er-
ror, 3 - warning, 4 - info, 5 - verbose, 6 - debug.

nle_active_bounds_mode integer / 0 Mode for how to handle active bounds: 0 - project New-
ton step at active bounds, 1 - use projected steepest de-
scent direction.

nle_jacobian_calculation_

mode

integer / 0 Mode for how to calculate the Jacobian: 0 - onesided dif-
ferences, 1 - central differences, 2 - central differences
at bound, 3 - central differences at bound and 0, 4 - cen-
tral differences in second Newton solve, 5 - central dif-
ferences at bound in second Newton solve, 6 - central dif-
ferences at bound and 0 in second Newton solve, 7 - cen-
tral differences at small residual, 8 - calculate Jacobian
externally, 9 - Jacobian compresssion.

nle_jacobian_finite_

difference_delta

real / 1.49E-08 Delta to use when calculating finite difference Jacobians.

nle_jacobian_update_mode integer / 2 Mode for how to update the Jacobian: 0 - full Jacobian, 1
- Broyden update, 2 - Reuse Jacobian.
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Option Option type /
Default value

Description

nle_solver_default_tol real / 1.0E-10 Default tolerance for the equation block solver.

nle_solver_exit_criterion integer / 3 Exit criterion mode: 0 - step length and residual based, 1
- only step length based, 2 - only residual based, 3 - hy-
brid.

nle_solver_max_residual_

scaling_factor

real / 1.0E10 Maximal scaling factor used by automatic and hybrid
residual scaling algorithm.

nle_solver_min_residual_

scaling_factor

real / 1.0E-10 Minimal scaling factor used by automatic and hybrid
residual scaling algorithm.

rescale_after_singular_jac boolean / true If enabled, scaling will be updated after a singular ja-
cobian was detected (only active if automatic scaling is
used).

rescale_each_step boolean / false If enabled, scaling will be updated at every step (only ac-
tive if automatic scaling is used).

residual_equation_scaling integer / 1 Equations scaling mode in equation block solvers: 0 -
no scaling, 1 - automatic scaling, 2 - manual scaling, 3
- hybrid, 4 - aggressive automatic scaling, 5 - automatic
rescaling at full Jacobian update

runtime_log_to_file boolean / false If enabled, log messages from the runtime are written di-
rectly to a file, besides passing it through the FMU inter-
face. The log file name is generated based on the FMU
name.

use_Brent_in_1d boolean / true If enabled, Brent search will be used to improve accuracy
in solution of 1D non-linear equations.

block_solver_profiling boolean / false If enabled, methods involved in solving an equation
block will be timed.

events_default_tol real / 1.0E-10 Default tolerance for the event iterations.

events_tol_factor real / 1.0E-4 Tolerance safety factor for the event indicators. Used
when external solver specifies relative tolerance.

nle_brent_ignore_error boolean / false If enabled, the Brent solver will ignore convergence fail-
ures.

nle_solver_check_jac_cond boolean / false If enabled, the equation block solver computes and log
the jacobian condition number.

nle_solver_max_iter integer / 100 Maximum number of iterations for the equation block
solver.
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Option Option type /
Default value

Description

nle_solver_max_iter_no_ ja-

cobian

integer / 10 Maximum number of iterations without jacobian update.
Value 1 means an update in every iteration.

nle_solver_min_tol real / 1.0E-12 Minimum tolerance for the equation block solver. Note
that, e.g. default Kinsol tolerance is machine precision
pwr 1/3, i.e. 1e-6.

nle_solver_regularization_

tolerance

real / -1.0 Tolerance for deciding when regularization should be ac-
tivated (i.e. when condition number > reg tol).

nle_solver_step_limit_ fac-

tor

real / 10.0 Factor limiting the step-size taken by the nonlinear block
solver.

nle_solver_tol_factor real / 1.0E-4 Tolerance safety factor for the equation block solver.
Used when external solver specifies relative tolerance.

nle_solver_use_last_

integrator_step

boolean / true If enabled, the initial guess for the iteration variables will
be set to the iteration variables from the last integrator
step.

nle_solver_use_nominals_as_

fallback

boolean / true If enabled, the nominal values will be used as initial
guess to the solver if initialization failed.

time_events_default_tol real / 2.22E-14 Default tolerance for the time event iterations.

use_jacobian_equilibration boolean / false If enabled, jacobian equilibration will be utilized in the
equation block solvers to improve linear solver accuracy.

use_newton_for_brent boolean / true If enabled, a few Newton steps are computed to get a bet-
ter initial guess for Brent.

block_solver_experimental_

mode

integer / 0 Activates experimental features of equation block solvers

cs_experimental_mode integer / 0 Activates experimental features of CS ode solvers
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Appendix B. Thirdparty Dependencies
B.1. Introduction
All dependencies needed to run JModelica.org are bundled in the installer and listed in Section B.3. However, to
utilize the OPC capabilities of openOPC the script INSTALL.bat in OpenOPC must be run, see Section B.2.

B.2. Open Platform Communication (OPC)
OPC, Open Platform Communication, is a series of standards and specifications for communication between dif-
ferent platforms maintained by OPC Foundation. It can be used for sending, e.g., measurement data, between con-
trol units.

In JModelica.org there is support for OPC communication through the bundled Python package OpenOPC. How-
ever, it requires additional installations to work. During the installation of JModelica.org you will be asked whether
to install Graybox OPC Automation Wrapper or not. If it is installed two dlls will be added to the windows reg-
istry and there will be a folder named OpenOPC in the installation folder. To start the required OPC server, the
INSTALL.bat must be run with administration rights. It takes three optional arguments; ip adress, inactivity time,
and max clients. For more information on the options, see OpenOPC/README.txt.

It is possible to test if the OPC server was setup properly by running the following in Python (32 and 64 bit):

from OpenOPC import open_client
opc = open_client()

If the server is not up-and-running an exception will be thrown.

Note that you during uninstallation of JModelica.org will be asked if Graybox OPC Automation Wrapper should
be uninstalled. An uninstallation will affect all installations of JModelica.org since the registred dlls will be deleted
from the registry.

B.3. Applications, Libraries and Python Packages in
JModelica.org
The following applications, libraries and Python packages are part of the JModelica.org installation.

Applications

• Java 1.7 (JRE)

• MinGW (tdm-gcc 5.1.0)

https://opcfoundation.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.mingw.org/
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• Python 2.7.13

• Swig 3.0.8

Libraries

• Ipopt 3.12.4

• boost 1.54

• Beaver 0.9.6.1

• eXpat 2.1.0

• Minizip

• MSL (Modelica Standard Library)

• SUNDIALS 2.7.0

• Zlib 1.2.6

• CasADi

• Graybox OPC Automation Wrapper 2.02

• OpenOPC for Python 1.3.1

Python packages

xlwings 0.11.4 mock 2.0.0
wxPython 4.0.0a1 mistune 0.7.4
wxPython-common 3.0.2.0 matplotlib 2.0.2
win-unicode-console 0.5 MarkupSafe 1.0
widgetsnbextension 3.0.3 lxml 4.0.0
webencodings 0.5.1 jupyter 1.0.0
wcwidth 0.1.7 jupyter-core 4.3.0
trollius 2.1 jupyter-console 5.2.0
traitlets 4.3.2 jupyter-client 5.1.0
tornado 4.5.2 jsonschema 2.6.0
testpath 0.3.1 JPype1 0.6.2
six 1.11.0 Jinja2 2.9.6
singledispatch 3.4.0.3 jdcal 1.3
simplegeneric 0.8.1 JCC 2.23
setuptools 36.5.0 ipywidgets 7.0.1

http://www.python.org/
http://www.swig.org/
https://projects.coin-or.org/Ipopt
http://www.boost.org/
http://beaver.sourceforge.net/
http://expat.sourceforge.net/
http://www.winimage.com/zLibDll/minizip.html
https://www.modelica.org/libraries
https://computation.llnl.gov/casc/sundials
http://www.zlib.net/
http://casadi.org
http://gray-box.net/download_daawrapper.php?lang=en
http://openopc.sourceforge.net/
http://xlwings.org
https://github.com/testing-cabal/mock
http://wxPython.org/
https://github.com/lepture/mistune
http://wxPython.org/
http://matplotlib.org
https://github.com/Drekin/win-unicode-console
http://github.com/pallets/markupsafe
http://ipython.org
http://lxml.de/
https://github.com/SimonSapin/python-webencodings
http://jupyter.org
https://github.com/jquast/wcwidth
http://jupyter.org
https://github.com/haypo/trollius
https://jupyter.org
http://ipython.org
http://jupyter.org
http://www.tornadoweb.org/
http://github.com/Julian/jsonschema
https://github.com/jupyter/testpath
https://github.com/originell/jpype/
http://pypi.python.org/pypi/six/
http://jinja.pocoo.org/
http://docs.python.org/3/library/functools.html#functools.singledispatch
http://github.com/phn/jdcal
http://cheeseshop.python.org/pypi/simplegeneric
https://lucene.apache.org/pylucene/jcc/
https://github.com/pypa/setuptools
http://ipython.org
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scipy 0.19.0 ipython 5.5.0
scandir 1.5 ipython-genutils 0.2.0
SALib 1.0.3 ipykernel 4.6.1
qtconsole 4.3.1 html5lib 0.999999999
pyzmq 16.0.2 futures 3.1.1
pytz 2017.2 functools32 3.2.3.post2
pythonnet 2.3.0 funcsigs 1.0.2
python-dateutil 2.6.1 freeopcua 0.90.3
Pyro 3.16 et-xmlfile 1.0.1
pyreadline 2.1 enum34 1.1.6
pypiwin32 219 entrypoints 0.2.3
pyparsing 2.2.0 decorator 4.1.2
Pygments 2.2.0 Cython 0.25.2
prompt-toolkit 1.0.15 cycler 0.10.0
pip 9.0.1 coverage 4.4.1
pickleshare 0.7.4 cov-core 1.15.0
pbr 3.1.1 configparser 3.5.0
pathlib2 2.3.0 comtypes 1.1.3
pandocfilters 1.4.2 colorama 0.3.9
openpyxl 2.4.8 certifi 2017.7.27.1
numpy 1.13.1+mkl bleach 2.0.0
notebook 5.1.0 backports.shutil-get-terminal-size 1.0.0
nose 1.3.7 backports-abc 0.5
nose-cov 1.6 pydoe 0.3.8
nbformat 4.4.0 pyserial 3.4
nbconvert 5.3.1 openopc 1.3.1
natsort 5.1.0 wheel 0.32.2

https://www.scipy.org
https://ipython.org
https://github.com/benhoyt/scandir
http://ipython.org
http://salib.github.io/SALib/
http://ipython.org
http://jupyter.org
https://github.com/html5lib/html5lib-python
https://pyzmq.readthedocs.org
https://github.com/agronholm/pythonfutures
http://pythonhosted.org/pytz
https://github.com/MiCHiLU/python-functools32
https://pythonnet.github.io/
http://funcsigs.readthedocs.org
https://dateutil.readthedocs.io
http://freeopcua.github.io/
http://irmen.home.xs4all.nl/pyro3/
https://bitbucket.org/openpyxl/et_xmlfile
http://ipython.org/pyreadline.html
https://bitbucket.org/stoneleaf/enum34
http://sourceforge.net/projects/pywin32/
https://github.com/takluyver/entrypoints
http://pyparsing.wikispaces.com/
https://github.com/micheles/decorator
http://pygments.org/
http://cython.org/
https://github.com/jonathanslenders/python-prompt-toolkit
http://github.com/matplotlib/cycler
https://pip.pypa.io/
https://coverage.readthedocs.io
https://github.com/pickleshare/pickleshare
https://github.com/schlamar/cov-core
http://docs.openstack.org/developer/pbr/
http://docs.python.org/3/library/configparser.html
https://pypi.python.org/pypi/pathlib2/
http://starship.python.net/crew/theller/comtypes
http://github.com/jgm/pandocfilters
https://github.com/tartley/colorama
https://openpyxl.readthedocs.io
http://certifi.io/
http://www.numpy.org
http://github.com/mozilla/bleach
http://jupyter.org
https://github.com/chrippa/backports.shutil_get_terminal_size
http://readthedocs.org/docs/nose/
https://github.com/cython/backports_abc
http://bitbucket.org/memedough/nose-cov/overview
https://github.com/tisimst/pyDOE
http://jupyter.org
http://pythonhosted.org/pyserial/
http://jupyter.org
http://openopc.sourceforge.net/
https://github.com/SethMMorton/natsort
https://github.com/pypa/wheel/tree/0.32.2
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Appendix C. Using External Functions
in Modelica
C.1. Introduction
External functions to a Modelica model is described by the language specification (3.2r2 Section 12.9 External
Function Interface). This appendix is intended to describe tool specific behaviour and common problems in relation
to the external functions. JModelica.org supports interfacing with both C and FORTRAN 77 functions.

C.2. External objects
The variability of external objects will be interpreted as parameter, even if the component is not declared with a
variability prefix. This is due to the fact that the constructors should only be called once and a discrete or continuous
external object would have to call its constructor many times. An external object may be dependent on fixed false
parameters. In that case the constructor will be called during the solving of the initial system. External objects are
not allowed in algebraic loops. If that is the case an error will be given during compilation.

C.3. LibraryDirectory
In addition to the base directory specified by the LibraryDirectory annotation the compiler looks for libraries in
<base>/<arch> and <base>/<arch>/<comp> with higher priority for the more specific directories. If the function
is intended to be used on multiple platforms or with multiple c-compilers there needs to be a specific version of
the library file for each intended use. For example, if a library is to be used on both 32 and 64 bit windows, using
both gcc and other c compilers, one would have to add several versions of the library. Each compiled specifically
for each platform and compiler combination. Note that the version of the compiler is also specified, since different
versions of the same compiler could be incompatible.

<base>/win32/gcc472/
<base>/win64/gcc472/
    

C.4. GCC
When compiling with GCC we use the -std=c89 flag. This means any header file included must conform to the
c89 standard. A common issue is comments. c89 does not allow "//" comments, Only "/* */". When the header file
include "//" comments the compilation will fail. The error message usually looks something like this:

sources/Test_Test1_funcs.c:4:1: error: expected identifier or '(' before '/' token
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Appendix D. Release Notes
D.1. Release notes for JModelica.org version 2.10

D.1.1. Compiler Changes

Important changes to the compiler:

• Fixed a bug that resulted in variables not being re-initialized in certain cases by adding writeback of reinitial-
ization in block residual functions.

D.2. Release notes for JModelica.org version 2.8
For this release there are some minor performance and debug improvements

D.3. Release notes for JModelica.org version 2.6.1

D.3.1. Compiler Changes

Important changes to the compiler:

• Fixed lookup of constraining class of redeclared class.

D.4. Release notes for JModelica.org version 2.6

D.4.1. Compiler Changes

Important changes to the compiler:

• Fixed type checking of array sizes for elements in arrays of records.

• Made sure to release the package.order file after reading.

D.5. Release notes for JModelica.org version 2.5

D.5.1. Python Packages Improvements

Important changes to Python packages:
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• Fixed issue with reusing the PyFMI computed FD Jacobian.

D.5.2. Compiler Changes

Important changes to the compiler:

• Updated the GUID calculation in FMUs to only be dependent on the generated model description XML.

• Updated calculation order of start values and dependent parameters to reduce number of evaluations.

• Fixed that binding expression splitting doesn't check bounds.

• Don't allow any inlining of equations in when loops.

• Fixed exception from specific combination of record with array of unknown size in if expression in binding
expression.

• Enabled evaluation of non-literal expressions in annotations.

D.6. Release notes for JModelica.org version 2.4

D.6.1. Runtime Changes

Important changes to Runtime:

• Improved the runtime logging framework due to performance issues with specific models.

D.6.2. Compiler Changes

Important changes to the compiler:

• Minor improvements of compilation and simulation performance.

• loadResource on directories now always leads to compile time evaluation of path.

D.7. Release notes for JModelica.org version 2.3

D.7.1. Compiler Changes

Important changes to the compiler:

• Support for initial parameter external objects.
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• Changed error check of arguments when compiling from command line to allow empty library argument if a
modelica path is supplied.

D.7.2. Python Packages Improvements

Important improvements to our Python packages:

• Fixed issue with getting time varying variables (sometimes wrong variables were returned).

• Added functionality to set enumerations with strings.

• Improved input handling for FMI2.

D.8. Release notes for JModelica.org version 2.2

D.8.1. Highlights

• Support for 64-bit Python has been added together with new and updated Python packages, see Section D.8.3.
This enables simulation of 64-bit FMUs with PyFMI.

• The bundled gcc C-compiler is now updated to gcc-tdm 5.1.0 which enables compilation of 64 bit FMUs.

• Full string support

• Changed the default FMI version when compiling FMUs from Python to FMI 2.0 instead of FMI 1.0.

• Changed default file storing method to binary format when simulating FMUs with PyFMI in Python.

• Achieved significant speedup in some models by adding a new memory allocation algorithm.

• There is now support for OPC communication through the bundled Python package OpenOPC together with
Graybox OPC Automation Wrapper.

D.8.2. Compiler Changes

Important changes to the compiler:

• Removed the experimental directional derivative generation feature.

• Added option for disabling external evaluation during variability propagation

D.8.3. Python distributions

With this release there are now two bundled Python interpreters, one for 32 bit mode and one for 64 bit mode.
In addition, there are now many more Python packages included and previously bundled packages are updated
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to newer versions. Among the new packages we have: XLwings, openpyxl, freeopcua, jupyter, SALib, natsort,
pyserial, pyro and coverage.

D.9. Release notes for JModelica.org version 2.1

D.9.1. Highlights

One of the focus areas for this release has been performance. The following are the main improvements:

• With this release compiler performance has been improved with up to 30% in compilation time and 20% in
memory reduction for some benchmark models.

• Support for the sparse solver SuperLU is added for simulation of FMI2 ME FMUs in PyFMI.

• A sparse solver has been added to solve large linear blocks.

D.10. Release notes for JModelica.org version 2.0

D.10.1. Highlights

For this release, focus has been on Modelica/MSL compliance. All example models in the bundled MSL version
simulate correctly with this release, with marginal additions, see the section called “Modelica Standard Library
(MSL)”. There is also support for IBPSA, see the section called “IBPSA”

A novel co-simulation master is available in PyFMI. It implements a number of master algorithms, see [And2016]
for details.

D.10.2. Compiler

D.10.2.1. Compliance

Modelica Standard Library (MSL)

For this release, the Modelica Standard Library (MSL) version 3.2.2 build 3 with the following patches applied
is used:

• To the model Modelica.Blocks.Examples.NoiseExamples.ActuatorWithNoise defined in Modelica/Blocks/
package.mo a StateSelect.always is added for Controller.y1. With this patch dynamic state selection is avoided.
See also the reported issue 2189 on the GitHub repository for Modelica Association.

• The model Modelica.Fluid.Examples.Tanks.TanksWithOverflow does not initialize with the original
parametrization in MSL 3.2.2 build 3 due to variable bounds not being respected, see issue 2060 on the GitHub
repository for Modelica Association. In the patch additional fluid flows through an overflow pipe if the level of
the upper tank exceeds 6 meters instead of 10 meters.

https://github.com/modelica/Modelica/issues/2189
https://github.com/modelica/Modelica/issues/2060
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• The state selection in Modelica.Magnetic.FluxTubes.Examples.Hysteresis.HysteresisModelComparison is
patched to improve the numerical robustness, see issue 2248 on the GitHub repository for Modelica Association.

• In Modelica.Fluid.Examples.TraceSubstances.RoomCO2WithControls the experiment tolerance is tightened to
1e-007 instead of 1e-006 to avoid chattering.

• In Modelica.Fluid.Examples.InverseParameterization pump.m_flow_start is set to 0.5 instead of 0.0. With this
change the correct branch is chosen in the actualStream operator, see issue 2063 on the GitHub repository for
Modelica Association.

With the patches listed above applied, all example models in version 3.2.2 build 3 of MSL simulate correctly with
JModelica.org 2.0. The results can be seen in the compliance reports for simulation and check on the JModelica.org
download site.

The trunk version of MSL has some additional example models compared to version 3.2.2. build 3. Compliance
reports for trunk MSL can be found on the JModelica.org public Jenkins, using trunk version of JModelica.org.

IBPSA

With JModelica.org 2.0 there is support for IBPSA, a Modelica library for building and disctrict energy systems.
More information can be found on the  Modelica IBPSA library GitHub website.

D.10.2.2. Simulation

For JModelica.org 2.0 improvements have been made for numerical robustness during initialization and simulation,
especially with regards to event handling.

D.10.2.3. A novel co-simulation algorithm

A novel co-simulation master algorithm is now available in the Python package PyFMI. The master algorithm
supports FMUs 2.0 for co-simulation. Features of the master algorithm include a parallel Jacobi approach as well as
a step-size controlled algorithm based on Richardson extrapolation. The theory and implementation of the software
is described in [And2016].

D.10.2.4. HTML Diagnostics

Improved HTML diagnostics with formatting and interactive functions.

D.11. Release notes for JModelica.org version 1.17

D.11.1. Highlights

For this release, all focus has been on Modelica/MSL compliance. All example models in the bundled MSL version
both check and simulate correctly with this release.

https://github.com/modelica/Modelica/issues/2248
https://github.com/modelica/Modelica/issues/2063
http://jmodelica.org/binary
http://jmodelica.org:8080
https://github.com/ibpsa/modelica-ibpsa
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D.11.2. Compiler

D.11.2.1. Compliance

For this release, the Modelica Standard Library (MSL) version 3.2.1 build 4 is used with some additional hand-
picked revisions from trunk. All example models in this version of MSL simulate correctly with the JModelica.org
1.17 release. The results can be seen in the compliance reports for simulation and check on the JModelica.org
download site.

The trunk version of MSL has some additional example models compared to version 3.2.1. build 4. Compliance
reports for trunk MSL can be found on the JModelica.org public Jenkins, using trunk version of JModelica.org.

D.12. Release notes for JModelica.org version 1.16

D.12.1. Highlights

• Strong focus on Modelica/MSL compliance

• A number of improvements to the CasADi tool chain for optimization

D.12.2. Compiler

D.12.2.1. Compliance

For this release, there has been a strong emphasis on improving Modelica/MSL compliance. In several MSL sub-
packages almost all example models now simulate with a correct result. Complete compliance reports can be found
on JModelica.org public Jenkins.

Especially, compliance improvements have been made in the following subpackages:

• Modelica.Mechanics.MultiBody

• Modelica.Blocks

• Modelica.Electrical.Analog

• Modelica.Electrical.Digital

• Modelica.Electrical.QuasiStationary

• Modelica.Electrical.Spice3

• Modelica.Magnetic

• Modelica.Mechanics.Rotational

http://jmodelica.org/binary
http://jmodelica.org:8080
http://jmodelica.org:8080
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• Modelica.Media

• Modelica.Thermal

• Modelica.Math

Further, the following operators are now supported:

• delay

• spatialDistribution

D.12.2.2. Support for dynamic state select

JModelica.org now does dynamic state selection, when necessary.

D.12.3. Optimization

Several additions and improvements in the CasADi tool chain for optimization have been made. Among the most
important are:

• Warm starting - descretize an optimization problem once, solve it multiple times with different parameters,
inputs, and initial guesses

• Classes for Model Predictive Control and Moving Horizon Estimation

• Back tracking from discretized problem to original. Trace back residuals, dual variables, and troublesome Jaco-
bian entries to the original model's equations and variables

• Possible to inspect equation scaling

• Checkpointing option to reduce discretization work

D.13. Release notes for JModelica.org version 1.15

D.13.1. Highlights

• FMI export supporting FMI 2.0

• FMI import supporting FMI 2.0 with PyFMI

• Improved MSL compliance

• Support for over-constrained initialization systems

• Dynamic optimization framework based on CasADi 2.0



Release Notes

129

• Improved numerical algorithms in FMU runtime

D.13.2. Compiler

D.13.2.1. Compliance

Many bug fixes in the compiler has resulted in greatly increased MSL support. Most or all of the tests and examples
for the following MSL sub-libraries now compile and simulate successfully (complete compliance information for
MSL can be found on the JModelica.org website, www.jmodelica.org):

• Blocks

• ComplexBlocks

• Electrical.Analog

• Electrical.Machines

• Electrical.MultiPhase

• Electrical.QuasiStationary

• Electrical.Spice3

• Magnetic

• Mechanics.Rotational

• Mechanics.Translational

• Media

• Thermal

• Utilities

D.13.2.2. Support for over-constrained initialization systems

Automatic balancing of over-constrained initial systems is now implemented. This means that the compiler auto-
matically checks the consistency of the initial system and automatically removes redundant initial equations.

D.13.2.3. FMU 2.0 export

Support for export of FMUs according to the the recently released FMI 2.0 specification, both for Model Exchange
and Co-Simulation, has been added.
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D.13.2.4. Improved numerical algorithms in FMU runtime

Numerous improvements has been made to the FMU runtime code. Specific improvements include solving one-
dimensional non-linear systems more robustly.

D.13.2.5. CasADi 2.0 support in Optimization

The CasADi based optimization tool chain has been updated to work with CasADi 1.9 and later (which is not
backwards compatible with CasADi 1.8 and earlier). This allows exploiting new CasADi improvements such as bug
fixes, pluggable solvers, and improved documentation. The version of CasADi that is included in JModelica.org
is now 2.0.

D.13.3. Simulation

Support for the recently released FMI 2.0 specification has been included in PyFMI. FMUs following FMI 2.0 can
now be loaded and simulated just as easily as FMUs following FMI 1.0.

D.14. Release notes for JModelica.org version 1.14

D.14.1. Highlights

• All models in the Modelica Standard Library, except Modelica.Fluid and those using operator delay() or function
pointers, pass error check

• FMI export supporting FMI 2.0RC2

• FMI import supporting FMI 2.0RC2 with PyFMI

• Improved error messages from the compiler

• Various improvements and extensions to the CasADi-based optimization toolchain

D.14.2. Compiler

D.14.2.1. Compliance

A lot of work with compliance has resulted in that almost all models in the Modelica Standard Library now pass
error check. Exceptions are models in Modelica.Fluid and those using the operator delay() or function pointers. In
particular, the following improvements have been made:

• Support for arrays indexed with enumerations or Booleans

• Support for overloaded operators and the Complex type
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• Improved error messages

• Support for structural parameters depending on external C/Fortran code

• Support for index reduction of optimization classes

• Improved modularization and extension points in the compiler

• Support for index reduction of optimization classes

• Many bug fixes to improve Modelica compliance

D.14.2.2. New compiler API

A new Java API for calling the compiler through a separate process has been added.

D.14.2.3. FMI 2.0 RC2 export

Support for export of FMUs that are compliant with FMI 2.0 RC2 has been added.

D.14.3. Simulation

Support for import and simulation of 2.0 RC2 FMUs with the Python package PyFMI.

D.14.4. Optimization

The following improvements have been made to the CasADi-based collocation algorithm:

• More efficient memory usage and code generation for function evaluations

• Interface added to WORHP, which serves as an alternative to IPOPT

• More general treatment of blocking factors. In particular it is now possible to penalize and constrain the discon-
tinuity jumps.

D.15. Release notes for JModelica.org version 1.13

D.15.1. Highlights

• FMI 2.0 Export, according to RC1

• New CasADi tool chain for optimization

• In-lined switches
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• Improved compliance

D.15.2. Compilers

D.15.2.1. FMI 2.0 RC1 export

FMI 2.0 export according to RC1 is supported. There are some limitations, summarized in the list below.

• Support for dependencies but not for dependenciesKind in the XML tag ModelStructure

• Support for directional derivative but known to have limitations in some cases

• No support for strings and running asynchronuously

• No support for FMU states (set, get and serialize)

D.15.2.2. Compliance

• Improved support for expandable connectors

• Improved support for unknown array sizes in functions

• Improved handling of the state select attribute

• Many bug fixes

D.15.3. Simulation

D.15.3.1. In-lined switches

In-lined switches have been introduced, which gives a more robust initialization and simulation of systems with
discrete parts.

D.15.4. Optimization

D.15.4.1. New CasADi tool chain

• Support for more Modelica features than previous CasADi-based tool chain

• User defined functions in models

• No support for control flow

• Flat model is exposed in Python in symbolic form using CasADi, and can be inspected and manipulated

• Support for a variety of collocation options
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D.16. Release notes for JModelica.org version 1.12

D.16.1. Highlights

• Greatly improved support for Modelica.Mechanics.MultiBody

• Support for expandable connectors

• Support for when statements

• Support for event generating built-in functions

• Support for overconstrained connection graphs

• Support for reinit() operator

D.16.2. Compilers

The following compliance improvements have been made:

• Improved support for algorithms, including when statements.

• Improved support for if equations.

• Improved handling of discrete constructs.

• Improved handling of attributes in alias sets.

• Improved index reduction algorithm.

• Added support for expandable connectors and for overconstrained connection systems.

• Added support for automatic differentiation of functions with smoothOrder annotation.

• Added support for String operations.

• Many bug fixes.

Added check mode, where a class is checked for errors to see if it can be used in a simulation class.

Class annotations are now only allowed as the last element of the class, as per the Modelica 3.2 specification.

D.16.3. Simulation

The following simulation improvements have been made:
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• Improved the simulation run-time with support for the improvements made in the compiler

• Improved the robustness when solving linear and nonlinear blocks.

JModelica.org now simulates the example models from the MultiBody package in MSL with the exception of the
few models that require dynamic state selection.

D.16.4. Contributors

Bengt-Arne Andersson

Christian Andersson

Tove Bergdahl

Emil Fredriksson

Magnus Gäfvert

Toivo Henningsson

Jonathan Kämpe

Björn Lennernäs

Fredrik Magnusson

Jesper Mattsson

Iakov Nakhimovski

Jon Sten

Johan Ylikiiskilä

Johan Åkesson

D.16.4.1. Previous contributors

Sofia Gedda

Petter Lindgren

John Lindskog

Tobias Mattsson
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Lennart Moraeus

Philip Nilsson

Teo Nilsson

Patrik Meijer

Kristina Olsson

Roberto Parrotto

Jens Rantil

Philip Reuterswärd

Jonas Rosenqvist

D.17. Release notes for JModelica.org version 1.11

D.17.1. Highlights

• Runtime logging

• Support for ModelicaError and assert

• Additional method in block solver

• Support for ModelicaStandardTables in MSL

• Improved compliance

D.17.2. Compilers

The following compliance improvements have been made:

• Most of the previously unsupported operators are now supported for FMUs

• Support for assert clauses

• String operations are now supported (this is useful for asserts, even though String variables are not supported)

• Support for vectorization for built-in functions

• Inlining of simple functions is now activated by default
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• Several bug fixes

D.17.3. Simulation

D.17.3.1. Runtime logging

The runtime logging has been much improved with a new debugging and analysis framework. This enables de-
bugging of convergence issues in non-linear systems of equations.

D.17.3.2. Support for ModelicaError and assert

The compiler and runtime has support for ModelicaError and assert clauses. If an assert clause fails or a Modeli-
caError is called, the integrator will reject the current step.

D.17.4. Contributors

Bengt-Arne Andersson

Christian Andersson

Tove Bergdahl

Emil Fredriksson

Magnus Gäfvert

Toivo Henningsson

Jonathan Kämpe

Fredrik Magnusson

Jesper Mattsson

Iakov Nakhimovski

Jon Sten

Johan Ylikiiskilä

Johan Åkesson

D.17.4.1. Previous contributors

Sofia Gedda
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Björn Lennernäs
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Lennart Moraeus

Philip Nilsson
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Patrik Meijer

Kristina Olsson

Roberto Parrotto

Jens Rantil

Philip Reuterswärd

Jonas Rosenqvist

D.18. Release notes for JModelica.org version 1.10

D.18.1. Highlights

• Export of FMUs for Co-Simulation

• Import of FMU 2.0b4 in PyFMI

• Improved log format for FMUs

• Improved variable scaling in the CasADi collocation

• Improved handling of measurement data in the CasADi collocation

• Improved logging from compilers

• Improved Modelica compliance

D.18.2. Compilers

The following compliance improvements have been made:
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• The following operators are now supported:

• smooth()

• skew(x)

• scalar(A)

• vector(A)

• matrix(A)

• diagonal(v)

• Improved handling of unmatched HGT. All unmatched iteration variables and residual equations are now paired
and treated the same way as regular HGT pairs.

• Improvements have been made to analytical jacobians. Notably full support for functions and bug fixes.

Also many bug fixes and performance improvements have been made.

D.18.2.1. Export of FMUs for Co-Simulation

Export of FMUs for Co-Simulation version 1.0 is now supported. Specifying a co-simulation FMU instead of a
model exchange FMU is done via an option to the compile_fmu method. The internal solver in the co-simulation
FMU is CVode from the Sundials suite and there is also an explicit Euler method. The choice of the solver can
be changed via a parameter in the FMU.

D.18.3. Python

D.18.3.1. Improved result data access

Modified handling of simulation and optimization results to facilitate post processing of results such as plotting.
Accessing variables and parameters from results will always return a vector of size equal to the time vector. Also,
the base result class (JMResultBase) has two new functions, initial and final, which will always return initial
and final value of the simulation/optimization as scalar values. See both Chapter 5 and Chapter 6 for plotting code
examples.

D.18.3.2. Improved error handling

Improved error handling of compiler problems (exceptions, errors and warnings). Problems are now given in the
same way as regardless if JPype or separate process is used when compiling. Additionally errors and warning
are now returned as python objects to facilitate easier post processing of compiler problems. It is also possible to
retrieve warnings from the return result of compile_fmu, compile_jmu and compile_fmux, e.g.:
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r = compile_fmu('Test', 'test.mo')
print r.warnings

D.18.3.3. Parsing of FMU log files

FMUs and JMUs created with JModelica.org now produce logs in a structured XML format, which can be either
parsed using tools in the Python module pyjmi.log or using general purpose XML tools. See Section 4.5.2 for
code examples.

D.18.4. Simulation

D.18.4.1. Support for FMU version 2.0b4

Added support for simulation of models following the FMI version 2.0 beta 4, both model exchange FMUs and
co-simulation FMUs.

D.18.4.2. Result filter

Added an option to the simulation method for filtering which variables are stored. This is especially useful in case
of large models with many variables as just selecting a subset of variables to store can speed up the simulation.
Additionally there is now the option to store the result directly in the memory instead of writing the result to file.

D.18.4.3. Improved solver support

Improvements on the solvers has been made resulting in that simulation of Model Exchange FMUs can now be
performed by a number of solvers. See the simulation options for the supported solvers. For example there is now
an Radau5 solver.

D.18.5. Optimization

D.18.5.1. Improved variable scaling

The variable scaling performed based on nominal trajectories for the CasADi collocation has been improved and
can now be set individually for each variable. It also has a more robust default behavior.

D.18.5.2. Improved handling of measurement data

The old class ParameterEstimationData for the CasADi collocation has been replaced by MeasurementData.
The new class can also be used for optimal control, and not only parameter estimation, and also offers additional
strategies in the handling of the data.

D.18.6. Contributors

Bengt-Arne Andersson
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Jens Rantil

Philip Reuterswärd

Jonas Rosenqvist

D.19. Release notes for JModelica.org version 1.9.1
This release contains a bug fix which eliminates a dependency on external libraries in FMUs. Apart from this bug
fix, the release is identical to JModelica.org version 1.9.

D.20. Release notes for JModelica.org version 1.9

D.20.1. Highlights

• Improved function inlining

• Manual selection of iteration variables in tearing algorithm - Hand Guided Tearing (HGT)

• Support for external objects

• Simulation of Co-simulation FMUs in Python

• Improved compiler execution speed

• Improved compiler memory efficiency

• Support for MSL CombiTables

• Improvements to the CasADi-based collocation optimization algorithm, including support for non-fixed time
horizons and supplying nominal trajectories for scaling purposes

• Updated to MSL 3.2

D.20.2. Compilers

D.20.2.1. Improved Modelica compliance

The following compliance improvements have been made:

• Support for external objects (classes extending the predefined partial class ExternalObject)

• Support for the same component being added from more than one extends clause.

• Many bug fixes, notably concerning inheritance and redeclares.
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D.20.2.2. Support for MSL CombiTables

There is now support for MSL CombiTables, both 1D and 2D. The table can be either read from file or explicitly
supplied as a parameter matrix.

D.20.2.3. Support for hand guided tearing

The tearing algorithm in the compiler can now be influenced by user selected residuals and iteration variables,
in order to make such selections explicit, e.g., to exploit physical insight in the choice of iteration variables. The
selections are made by means of vendor specific annotations and can be done at the component level and at the
system level.

D.20.2.4. Improved function inlining

Improved support for inlining of functions. Notably a new in-lining mode has been added, where functions that can
be inlined without introducing additional variables to the model. The inlining algorithm has also been expanded
to handle more situations.

D.20.2.5. Memory and execution time improvements in the compiler

The compilation times for large simulation models has been reduced by more than two orders of magnitudes. Also,
the memory required to compile large models has been decreased by two orders of magnitude. As a consequence,
larger models up to 100.000 equations can be comfortably compiled on a standard computer.

D.20.3. Python

D.20.3.1. Compile in separate process

The possibility to compile in a separate process from the Python interface has been added. This is enabled with
an argument to compile_fmu, compile_jmu or compile_fmux which is False by default. It is also possible to
pass arguments to the JVM. This enables, among other things, users on 64 bit Windows to use a 64 bit JRE (Java
Runtime Environment) for compiling a model.

D.20.4. Simulation

D.20.4.1. Simulation of co-simulation FMUs

Support for simulation of co-simulation FMUs following the FMI version 1.0 has been implemented and follows
the same work-flow as for loading and simulating an model exchange FMU, i.e:

from pyfmi import load_fmu
model = load_fmu("CS_Model.fmu")
res = model.simulate(final_time=1.0)
...
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D.20.5. Optimization

D.20.5.1. Improvements to CasADi-based collocation algorithm

The following features have been added to the CasADi-based collocation algorithm

• Support for non-fixed time horizons, allowing the formulation of, for example, minimum-time problems

• Possibility to supply nominal trajectories based on simulation results, which are used to compute (possibly time-
variant) scaling factors. This makes it possible to conveniently obtain good scaling for all variables in a model.

• Possibility to use more advanced interpolation of optimized inputs based on collocation polynomials, instead of
linear interpolation, providing higher accuracy when simulating a system using optimized inputs

• Setting of nominal attributes from Python in loaded models

D.20.6. Contributors

Bengt-Arne Andersson

Christian Andersson

Tove Bergdahl

Magnus Gäfvert

Fredrik Magnusson

Jesper Mattsson

Iakov Nakhimovski
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Jon Sten

Johan Ylikiiskilä

Johan Åkesson

D.20.6.1. Previous contributors
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Tobias Mattsson
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Philip Reuterswärd

D.21. Release notes for JModelica.org version 1.8.1
This release is identical to JModelica.org version 1.8 apart from one important bug fix. The issue that has been
fixed concerns the scaling of start attributes in JMUs.

D.22. Release notes for JModelica.org version 1.8

D.22.1. Highlights

• Improved Modelica compliance of the compiler front-end, including support for if equations and inner/outer
declarations

• Optimized performance and memory utilization of the compiler front-end

• A new state selection algorithm with support for user defined state selections

• A new function inlining algorithm for conversion of algorithmic functions into equations

• Improvements to the CasADi-based collocation optimization algorithm, including support for terminal con-
straints

D.22.2. Compilers

D.22.2.1. Improved Modelica compliance

The following compliance improvements have been made:

• Support for if equations

• Support for inner/outer declarations
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• Expressions in der() operator

• Function call equations in when equations

• Limited support for String parameters. String parameters are now supported in the compiler front-end, although
they are discarded in the code generation.

Also, many bug fixes and performance improvements in the compiler are included in this release.

D.22.2.2. Function inlining

There is a new function inlining algorithm for conversion of algorithmic functions into equations.

D.22.2.3. New state selection algorithm

The new state selection algorithm takes user input (stateSelect attribute) into account and implements heuristics to
select states that avoids, if possible, iteration of non-linear systems of equations.

D.22.3. Python

D.22.3.1. Simplified compiling with libraries

The compiler now support adding extra libraries as files, which makes it easier to compile a model using a structured
library not in the MODELICAPATH. Both Python functions compile_jmu and compile_fmu support this. For
example, compiling A.B.Example from a library A in directory LibDir with compile_fmu, this can now be written
as:

compile_fmu('A.B.Example', 'LibDir/A')

D.22.4. Optimization

D.22.4.1. Improvements to CasADi-based collocation algorithm

The CasADi-based collocation algorithm has been improved with new features

• Support for point constraints

• Setting of parameter values from Python in loaded models

• Setting of min/max attributes from Python in loaded models

D.22.5. Contributors

Bengt-Arne Andersson
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D.23. Release notes for JModelica.org version 1.7

D.23.1. Highlights

• Improved support for hybrid systems, including friction models and ideal diodes
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• Support for tearing of equation systems

• Support for external Fortran functions

• Support for function inlining

• Reorganization of the Python code: a new stand-alone package, PyFMI, provided

• A novel dynamic optimization algorithm implemented in Python based on collocation and CasADi is provided

D.23.2. Compilers

D.23.2.1. Support for mixed systems of equations

Mixed systems of equations, i.e., equation systems containing both real and integer/boolean variables are supported.
Such systems commonly occurs in, e.g., friction models and diode models.

D.23.2.2. Support for tearing

Tearing is a technique to improve simulation efficiency by reducing the number of iteration variables when solving
systems of equations. A tearing algorithm relying on graph-theoretical methods has been implemented, which is
used to generate more efficient simulation code.

D.23.2.3. Improved Modelica compliance

With added support for external Fortran function and many bug fixes, the compiler now handles many models that
previously would not compile.

D.23.2.4. Function inlining

Calls to Modelica functions (i.e. not external functions) in equations can now be inlined, by adding the equivalent
equations and temporary variables. This allows some transformations that are specific to equations to be performed
on the function calls as well. It also allows compilation targets that does not handle functions, such as CasADi, to
be used with models containing functions. Currently, only functions that only contains assignment statements are
supported. Such function are common in e.g. media libraries.

D.23.3. Python

D.23.3.1. New package structure

The Python code has been refactored into three packages:

• PyFMI A package for working with FMUs, perform simulations, interact with the model, plotting of result data
and more. This package can be used stand-alone, see www.pyfmi.org.

http://www.pyfmi.org
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• PyJMI A package for working with JMUs, solve optimization problems, perform simulations, model interaction
and more.

• PyModelica A package containing Modelica and Optimica compilers.

D.23.3.2. Support for shared libraries in FMUs

The FMU import and export now supports dependencies on extra shared libraries. For the export, the shared li-
braries are placed in the same folder as the model binary. Similarly, any shared libraries packed with the model
binary will be found when importing the FMU.

D.23.4. Simulation

D.23.4.1. Simulation of hybrid systems

The improved compiler support for mixed systems of equations is matched by extensions to the JModelica.org
simulation runtime system, enabling simulation of more sophisticated hybrid models. Amongst others, the classic
Modelica.Mechanics.Rotational.Examples.CoupledClutches benchmark model can be now simulated.

D.23.5. Optimization

D.23.5.1. A novel CasADi-based collocation algorithm

A novel CasADi-based collocation algorithm is provided. The new algorithm is implemented in Python and relies
on the CasADi package for computation of derivatives and interaction with IPOPT. The new algorithm is an order
of magnitude faster than the existing collocation algorithm on many problems, and provides significantly improved
flexibility.

D.23.6. Contributors

Bengt-Arne Andersson

Christian Andersson

Tove Bergdahl
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Fredrik Magnusson

Jesper Mattsson
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D.24. Release notes for JModelica.org version 1.6

D.24.1. Highlights

• A new derivative free parameter optimization algorithm for FMUs

• A new pseudo spectral optimization algorithm

• Index reduction to handle high-index DAEs

• A new graphical user interface for plotting of simulation and optimization results

• Icon rendering and many improvements in the Eclipse Modelica plug-in

D.24.2. Compilers

D.24.2.1. Index reduction

High-index systems, commonly occurring in mechanical systems, are supported in JModelica.org 1.6. The imple-
mentation relies on Pantelides' algorithm and the dummy derivative selection algorithm.
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D.24.2.2. Modelica compliance

The following improvements to the Modelica compliance of the editors has been made:

• Partial support for the smooth() operator (not used in event handling, otherwise supported).

• Support for global name lookup (i.e. names starting with a dot are looked up from the top scope).

D.24.3. Python

D.24.3.1. Graphical user interface for visualization of simulation and optimiza-
tion results

A new graphical interface for displaying simulation and / or optimization results have been implemented. The
interface also supports results generated from Dymola, both binary and textual.

D.24.3.2. Simulation with function inputs

The Python simulation interface has been improved so that top level inputs in FMUs can be driven by Python
functions in addition to tables.

D.24.3.3. Compilation of XML models

A new convenience function for compilation of Modelica and Optimica models into XML, including equations,
has been added.

D.24.3.4. Python version upgrade

The Python package has been updated to Python 2.7.

D.24.4. Optimization

D.24.4.1. Derivative- free optimization of FMUs

The derivative-free optimization algorithm in JModelica.org enables users to calibrate dynamic models compliant
with the Functional Mock-up Interface standard (FMUs) using measurement data. The new functionality offers
flexible and easy to use Python functions for model calibration and relies on the FMU simulation capabilities of
JModelica.org. FMU models generated by JModelica.org or other FMI-compliant tools such as AMESim, Dymola,
or SimulationX can be calibrated.

D.24.4.2. Pseudo spectral methods for dynamic optimization

Pseudo spectral optimization methods, based on collocation, are now available. The algorithms relies on CasADi
for evaluation of derivatives, first and second order, and IPOPT is used to solve the resulting non-linear program.
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Optimization of ordinary differential equations and multi-phase problems are supported. The algorithm has been
developed in collaboration with Mitsubishi Electric Research Lab, Boston, USA, where it has been used to solve
satellite navigation problems.

D.24.5. Eclipse Modelica plugin

The JModelica.org Eclipse plugin has improved to the point where we are ready to do a release. Version 0.4.0 is
now available from the JModelica.org website.

Changes from the versions that has been available from the SVN repository are mainly stability and performance
improvements. To this end, some features have been disabled (auto-complete and format file/region). There are
also a few new features, most notably support for rendering of class icons.

D.24.6. Contributors

Christian Andersson

Tove Bergdahl

Sofia Gedda

Magnus Gäfvert

Petter Lindgren

Fredrik Magnusson

Jesper Mattsson
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Philip Reuterswärd

D.25. Release notes for JModelica.org version 1.5

D.25.1. Highlights

• FMU export

• Improvements in compiler front-end

• Equation sorting and BLT

• Symbolic solution of simple equations

• Improved simulation support for hybrid and sampled systems

• Improved initialization with Kinsol and SuperLU

• Improved support for external functions.

D.25.2. Compilers

D.25.2.1. When clauses

When clauses are supported in the Modelica compiler.

D.25.2.2. Equation sorting

Equations are sorted using Tarjan's algorithm and the resulting BLT representation is used in the C code generation.
Also, trivial equations are solved and converted into assignment statements.

D.25.2.3. Connections

Added support for connecting arrays of components and for connect equations in for clauses.

D.25.2.4. Eclipse IDE

The JModelica plugin for Eclipse has been updated to be more stable and to syntax highlight Modelica 3.2 code
properly.

D.25.2.5. Miscellaneous

Fixed several compiler bugs.
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D.25.3. Simulation

D.25.3.1. FMU export

JModelica.org 1.5 supports export of Functional Mock-up Interface (FMI) compliant models (FMUs). The exported
models follows the FMI standard and may be imported in other FMI compilant simulation tools, or they may
be simulated using JModelica.org using the FMU import feature introduced in version 1.4. The exported FMUs
contain an XML file, containing model meta data such as variable names, a DLL, containing the compiled C
functions specified by FMI, and additional files containing the flattened Modelica model useful for debugging
purposes.

D.25.3.2. Simulation of ODEs

A causalization approach to simulation of Modelica models has been implemented. This means that the DAE
resulting from flattening is transformed into an ODE, and ODE solvers can be used to simulate the model. This
feature is a requirement for export of FMUs. This strategy has required the symbolic algorithms and the C code
generation module to be adapted as described above. In addition, the simulation runtime system has been extended
to allow for trivial equations converted into assignments and for implicit systems of equations. The latter are solved
using the Newton solver KINSOL, modified to support regularization to handle singular Jacobian matrices.

D.25.3.3. Simulation of hybrid and sampled systems

When clauses are now supported, as well as the sample operator. Accordingly, some classes of hybrid systems
may be simulated as well as sampled control systems. In addition, variables of type Integer and Boolean are also
supported.

D.25.4. Initialization of DAEs

A novel initialization algorithm based on the Newton solver KINSOL from the SUNDIALS suite is introduced. The
KINSOL solver has been improved by adding support for Jacobian regularization in order to handle singular Jaco-
bians and by interfacing the sparse linear solver SuperLU in order to more efficiently handle large scale systems.

D.25.5. Optimization

Curtis Powell Reid seeding has been implemented to speed up computation of sparse Jacobians. When solving
large optimization problems, this can give a speed-up factor of up to 10-15.

D.25.6. Contributors
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D.26. Release notes for JModelica.org version 1.4

D.26.1. Highlights

• Improved Python user interaction functions

• Improvements in compiler front-end

• Support for sensitivity analysis of DAEs using Sundials

• Introduced new model concept, jmu-models.

• Support for enumerations

D.26.2. Compilers

D.26.2.1. Enumerations

Added support for enumerations to the same extent as Integers, except that arrays indexed with enumerations are
not supported.

D.26.2.2. Miscellaneous

Fixed many compiler bugs, especially concerning complex class structures.

D.26.2.3. Improved reporting of structural singularities

Systems which are structurally singular now generates an error message. Also, high-index systems, which are not
yet supported, are reported as structurally singular systems.
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D.26.2.4. Automatic addition of initial equations

A matching algorithm is used to automatically add initial equations to obtain a balanced DAE initialization system.
If too few initial equations are given, the algorithm will set the fixed attribute to true for some of the differentiated
variables in the model.

D.26.3. Python interface

D.26.3.1. Models

• Introduced new model class jmodelica.jmi.JMUModel which replaced jmodelica.jmi.JMIModel.

• jmodelica.fmi.FMIModel changed name to jmodelica.fmi.FMUModel.

• jmodelica.jmi.JMIModel.get_value and set_value have changed to jmodelica.jmi.JMUModel.get and
set, which have also been introduced for jmodelica.fmi.FMUModel

D.26.3.2. Compiling

• Introduced JMU files which are compressed files containing files created during compilation.

• Introduced new method jmodelica.jmi.compile_jmu which compiles Modelica or Optimica models to JMUs.
These JMUs are then used when creating a JMUModel which loads the model in a Python object.

• Removed possibility to compile models directly in high-level functions, initialize, simulate and optimize. Instead
compile_jmu should be used.

D.26.3.3. initialize, simulate and optimize

• initialize, simulate and optimize are no longer functions under jmodelica but methods of
jmodelica.jmi.JMUModel and jmodelica.fmi.FMUModel (initialize and simulate only).

• New objects for options to initialize, simulate and optimize have been introduced. The alg_args and
solver_args parameters have therefore been removed. The options from alg_args and solver_args can now
be found in the options object. Each algorithm for initialize, simulate and optimize have their own options
object.

D.26.3.4. Result object

Added convenience methods for getting variable trajectories from the result. The result trajectories are now ac-
cessed as objects in a dictionary:

res = model.simulate()
yres = res['y']
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D.26.4. Simulation

D.26.4.1. Input trajectories

Changed how the input trajectories are handled. The trajectories now have to be connected to an input variable
as a 2-tuple. The first argument should be a list of variables or a single variable. The second argument should be
a data matrix with the first column as the time vector and the following columns corresponding to the variables
in the first argument.

D.26.4.2. Sensitivity calculations

Sensitivity calculations have been implemented when using the solver IDA from the Assimulo package. The sen-
sitivity calculations are activated with the the option:

opts['IDA_options']['sensitivity'] = True

which calculates sensitivities of the states with respect to the free parameters.

D.26.4.3. Write scaled simulation result to file

In some cases, it is useful to be able to write the scaled simulation result when the option
enable_variable_scaling is set to true. Specifically, this supports debugging to detect if additional variables
should have a nominal value. This feature is available also for initialization and optimization.
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D.27. Release notes for JModelica.org version 1.3

D.27.1. Highlights

• Functional Mockup Interface (FMI) simulation support

• Support for minimum time problems

• Improved support for redeclare/replaceable in the compiler frontend

• Limited support for external functions

• Support for stream connections (with up to two connectors in a connection)

D.27.2. Compilers

D.27.2.1. The Modelica compiler

Arrays

Slice operations are now supported.

Array support is now nearly complete. The exceptions are:

• Functions with array inputs with sizes declared as ':' - only basic support.

• A few array-related function-like operators are not supported.

• Connect clauses does not handle arrays of connectors properly.

Redecare

Redeclares as class elements are now supported.

Conditional components

Conditional components are now supported.

Constants and parameters

Function calls can now be used as binding expressions for parameters and constants. The handling of Integer,
Boolean and record type parameters is also improved.
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External functions

• Basic support for external functions written in C.

• Annotations for libraries, includes, library directories and include directories supported.

• Platform directories supported.

• Can not be used together with CppAD.

• Arrays as arguments are not yet supported. Functions in Modelica_utilies are also not supported.

Stream connectors

Stream connectors, including the operators inStream and actualStream and connections with up to two stream
connectors are supported.

Miscellaneous

The error checking has been improved, eliminating many erroneous error messages for correct Modelica code.

The memory and time usage for the compiler has been greatly reduced for medium and large models, especially
for complex class structures.

D.27.2.2. The Optimica compiler

All support mentioned for the Modelica compiler applies to the Optimica compiler as well.

New class attribute objectiveIntegrand

Support for the objectiveIntegrand class attribute. In order to encode Lagrange cost functions of the type

the Optimica class attribute objectiveIntegrand is supported by the Optimica compiler. The expression L may
be utilized by optimization algorithms providing dedicated support for Lagrange cost functions.

Support for minimum time problems

Optimization problems with free initial and terminal times can now be solved by setting the free attribute of the
class attributes startTime and finalTime to true. The Optimica compiler automatically translates the problem into
a fixed horizon problems with free parameters for the start en terminal times, which in turn are used to rescale
the time of the problem.
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Using this method, no changes are required to the optimization algorithm, since a fixed horizon problem is solved.

D.27.3. JModelica.org Model Interface (JMI)

D.27.3.1. The collocation optimization algorithm

Dependent parameters

Support for free dependent parameters in the collocation optimization algorithm is now implemented. In models
containing parameter declarations such as:

parameter Real p1(free=true);
parameter Real p2 = p1;

where the parameter p2 needs to be considered as being free in the optimization problem, with the additional
equality constraint:

p1 = p2

included in the problem.

Support for Lagrange cost functions

The new Optimica class attribute objectiveIntegrand, see above, is supported by the collocation optimization al-
gorithm. The integral cost is approximated by a Radau quadrature formula.

D.27.4. Assimulo

Support for simulation of an FMU (see below) using Assimulo. Simulation of an FMU can either be done by using
the high-level method *simulate* or creating a model from the FMIModel class together with a problem class,
FMIODE which is then passed to CVode.

D.27.5. FMI compliance

Improved support for the Functional Mockup Interface (FMI) standard. Support for importing an FMI model,
FMU (Functional Mockup Unit). The import consist of loading the FMU into Python and connecting the models
C execution interface to Python. Note, strings are not currently supported.

Imported FMUs can be simulated using the Assimulo package.

D.27.6. XML model export

D.27.6.1. noEvent operator

Support for the built-in operator noEvent has been implemented.
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D.27.6.2. static attribute

Support for the Optimica attribute static has been implemented.

D.27.7. Python integration

D.27.7.1. High-level functions

Model files

Passing more than one model file to high-level functions supported.

New result object

A result object is used as return argument for all algorithms. The result object for each algorithm extends the base
class ResultBase and will therefore (at least) contain: the model object, the result file name, the solver used and
the result data object.

D.27.7.2. File I/O

Rewriting xmlparser.py has improved performance when writing simulation result data to file considerably.
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D.28. Release notes for JModelica.org version 1.2

D.28.1. Highlights

• Vectors and user defined functions are supported by the Modelica and Optimica compilers

• New Python functions for easy initialization, simulation and optimization

• A new Python simulation package, Assimulo, has been integrated to provide increased flexibility and perfor-
mance

D.28.2. Compilers

D.28.2.1. The Modelica compiler

Arrays

Arrays are now almost fully supported. This includes all arithmetic operations and use of arrays in all places
allowed in the language specification. The only exception is slice operations, that are only supported for the last
component in an access.

Function-like operators

Most function-like operators are now supported. The following list contains the function-like operators that are
*not* supported:

• sign(v)

• Integer(e)

• String(...)

• div(x,y)

• mod(x,y)

• rem(x,y)

• ceil(x)

• floor(x)

• integer(x)

• delay(...)
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• cardinality()

• semiLinear()

• Subtask.decouple(v)

• initial()

• terminal()

• smooth(p, expr)

• sample(start, interval)

• pre(y)

• edge(b)

• reinit(x, expr)

• scalar(A)

• vector(A)

• matrix(A)

• diagonal(v)

• product(...)

• outerProduct(v1, v2)

• symmetric(A)

• skew(x)

Functions and algorithms

Both algorithms and pure Modelica functions are supported, with a few exceptions:

• Use of control structures (if, for, etc.) with test or loop expressions with variability that is higher than parameter
is not supported when compiling for CppAD.

• Indexes to arrays of records with variability that is higher than parameter is not supported when compiling for
CppAD.

• Support for inputs to functions with one or more dimensions declared with ":" is only partial.
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External functions are not supported.

Miscellaneous

• Record constructors are now supported.

• Limited support for constructs generating events. If expressions are supported.

• The noEvent operator is supported.

• The error checking has been expanded to cover more errors.

• Modelica compliance errors are reported for legal but unsupported language constructs.

D.28.2.2. The Optimica Compiler

All support mentioned for the Modelica compiler applies to the Optimica compiler as well.

D.28.3. The JModelica.org Model Interface (JMI)

D.28.3.1. General

Automatic scaling based on the nominal attribute

The Modelica attribute nominal can be used to scale variables. This is particularly important when solv-
ing optimization problems where poorly scaled systems may result in lack of convergence. Automatic scal-
ing is turned off by default since it introduces a slight computational overhead: setting the compiler option
enable_variable_scaling to true enables this feature.

Support for event indicator functions

Support for event indicator functions and switching functions are now provided. These features are used by the
new simulation package Assimulo to simulate systems with events. Notice that limitations in the compiler front-
end applies, see above.

Integer and boolean parameters

Support for event indicator functions and switching functions are now provided. These features are used by the
new simulation package Assimulo to simulate systems with events. Notice that limitations in the compiler front-
end applies, see above.

Linearization

A function for linearization of DAE models is provided. The linearized models are computed using automatic dif-
ferentiation which gives results at machine precision. Also, for index-1 systems, linearized DAEs can be converted
into linear ODE form suitable for e.g., control design.
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D.28.4. The collocation optimization algorithm

D.28.4.1. Piecewise constant control signals

In control applications, in particular model predictive control, it is common to assume piecewise constant control
variables, sometimes referred to as blocking factors. Blocking factors are now supported by the collocation-based
optimization algorithm, see jmodelica.examples.cstr_mpc for an example.

D.28.4.2. Free initial conditions allowed

The restriction that all state initial conditions should be fixed has been relaxed in the optimization algorithm. This
enables more flexible formulation of optimization problems.

D.28.4.3. Dens output of optimization result

Functions for retrieving the optimization result from the collocation-based algorithm in a dense format are now
provided. Two options are available: either a user defined mesh is provided or the result is given for a user defined
number of points inside each finite element. Interpolation of the collocation polynomials are used to obtain the
dense output.

D.28.5. New simulation package: Assimulo

The simulation based on pySundials have been removed and replaced by the Assimulo package which is also
using the Sundials solvers. The main difference between the two is that Assimulo is using Cython to connect to
Sundials. This has substantially improved the simulation speed. For more info regarding Assimulo and its features,
see: http://www.jmodelica.org/assimulo.

D.28.6. FMI compliance

The Functional Mockup Interface (FMI) standard is partially supported. FMI compliant model meta data XML
document can be exported, support for the FMI C model execution interface is not yet supported.

D.28.7. XML model export

Models are now exported in XML format. The XML documents contain information on the set of variables, the
equations, the user defined functions and for the Optimica´s optimization problems definition of the flattened
model. Documents can be validated by a schema designed as an extension of the FMI XML schema.

D.28.8. Python integration

• The order of the non-named arguments for the ModelicaCompiler and OptimicaCompiler function
compile_model has changed. In previous versions the arguments came in the order (model_file_name,

http://www.jmodelica.org/assimulo
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model_class_name, target = "model") and is now (model_class_name, model_file_name, target =
"model").

• The functions setparameter and getparameter in jmi.Model have been removed. Instead the functions
set_value and get_value (also in jmi.Model) should be used.

• Caching has been implemented in the xmlparser module to improve execution time for working with jmi.Model
objects, which should be noticeable for large models.

D.28.8.1. New high-level functions for optimization and simulation

New high-level functions for problem initialization, optimization and simulation have been added which wrap the
compilation of a model, creation of a model object, setup and running of an initialization/optimization/simulation
and returning of a result in one function call. For each function there is an algorithm implemented which will be
used by default but there is also the possibility to add custom algorithms. All examples in the example package
have been updated to use the high-level functions.
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