JModelica.org User Guide

Version 2.1

JModelica.org User Guide: Version 2.1

Publication date 2017-09-21
Copyright © 2017 Modelon AB

Acknowledgements

This document is produced with DocBook 5 using XMLMind XML Editor for authoring, Norman Walsh's XSL
stylesheets and a GNOME xdltproc + Apache fop toolchain. Math contents is converted from LaTeX using the

TeX/LaTeX to MathML Online Trandator by the Ontario Research Centre for Computer Algebra and processed
by JEuclid.

Table of Contents

O [oo (B 1o o RSP SUPPTTSPPPT 1
AN oo T0 | A Y/ To (< o= Mo o [PPSR 1

1.2, MISSION SEBLEIMIENL ... eeeeti ettt ettt ettt e e et et e et e et e et e et e e e e et e e e e et e e e eaba e eaennen 1

1.3 TECANOIOGY ...ttt e e e 1

A 10 = = o o PSPPSR 3
2.1, SUPPOITEd PIALFOMMS ...t ettt 3

2.2, INsStallation 0N WINAOWSciiiiiiiiii e et e e eeere e 3
2.2. 1. DEPENAENCIES ...ttt ettt 3

2.2.2. INSEAHTBLION ...eeeeee et et 4

2.2.3. Verifying the iNStallationoiiiiiiiiii e 4

2.2.4, CompPilation frOM SOUICESuuuieiiti et e et et e e e e et et e e e eab e e e eabn e aeen 5

2.3, Installation 0N LiNUX SYSEEMSuuiiiiiieeeeiie et e ettt e et e e e e e e b 5
2.3 L PrEfEOUISITES ... ieiii ettt ettt e e et ettt e e e e e e e aee 5

2.3.2. COMPITING ettt et et et aaans 8

RS RS R = (] 0To IV Y oo = T Tor= Mo o SO SPPPTTRPPIN 8

R 1] [= 11 1= o PP PT 9
3.1. The IModelica.org Python Packagesuuiiiiiiiiiiiii e e 9

3.2, Starting @ PYthOn SESSIONcciiueieiiii et e 9
2L WINGOWS ..ttt ettt e e et e et e e et e e et eeaba s 9

3202, LENUX ettt ettt ettt e e e aa s 9

3.3, RUNNING @N BXBMPIE ...ttt ettt e et e et e e e eaba e eeees 10

3.4. Redefining the IModelica.org enVIFONMENTiiiiiiiiie e 10
3.4.1. Example redefining IPOPT_HOMEcoouiiiiiiii e 10

3.5. The IMOdelica.0rg USEr TOMUIMoouuiiiiii e et e e e e eeaans 11

4. Working wWith ModelS in PYERONocoiii e 12
4.1, INtrodUCtion T0 MOGEISuiiii i e et e e b 12
4.1.1. The different model objects in IMOeliCaOrgccvviiiiiiiieii e 12

4.2, COMPITBLION .ttt ettt e e et et e e et et e e et et e e e e et e e e eeba e e e eebaaeaee 12
4.2.1. Simple FMU-ME compilation eXampleooiiiiiiiiiii e 13

4.2.2. Simple FMU-CS compilation eXampleoveiieiiiiiiiieci e 13

4.2.3. Compiling from lIDraries ... 14

424, COMPIES SEEINGS ... eeeetti ettt e et e e ettt e ettt e e ettt e e e eab e aees 15

4.3, L0BAING MOUEIS ...ttt e e et e e et e e et e e e aba s 17
4.3.1. Loading @ FMU .ooun e 17

4.3.2. Transferring an Optimization Problem ..o 18

4.4. Changing MOOE!l PAIrBIMELENSiiiiii et et e et e et e e et e e e e et e e eeteaeeees 18
4.4.1. Setting and getting ParamELErSuuiiiiiii e 18

4.5. DEDUGUING MOUEIS ...ttt e et e e e 19
3 W @Yo o o] 1= g oo o 1 oo RSP PP T RUOPPTTRPPN 19

4.5.2. RUNIME TOGUING ettt ettt e et e e e e e e e b 19

JModelica.org User Guide

4.5.3. Compiler DiagnOStiC OULPULuieeneiie ettt e e e et e e et e eeb e ea e eanaees 22

5. Simulation of FIMUS iN PYERONcue et e e e aa e 23
L3N B [oo (B [o o RSP PP SPPPPNN 23

B.20 A FIrSt @XAIMPIE .. et 23

5.3, SIMUIELION Of MOUEIS ..ot et 25
5.3.1. Convenience method, 1oad fmu ..., 26

53,2, ATQUIMEIES ..ttt ettt ettt et e e e ettt et e e e e e e e a e eae 26

5.3.3. REIUMN @QUIMENT ...ttt ettt e et et e et e e e e e eaaees 31

B EXAMPIES .ttt et e a e e eans 31
5.4.1. Simulation of a high-index MOdel ... 31

5.4.2. Simulation and Parameter SWEEPDSuiuuneii it et e et e e e e e et e e e et e e e e 33

5.4.3. Simulation of an Engine model With INPULScoiiiiiiiiii e, 35

5.4.4. Smulation using the native FMI interfaceooeeiiiiiiii e 38

5.4.5. Simulation of Co-SIMUIation FIMUSouiiiiiiiii e 43

6. Dynamic Optimization iN PYthoN ... e eaa s 45
LN W [oo (B (o o RSP PP SPPPPNN 45

B.2. A FIrSt EXAIMPIE ... et 45

6.3. Solving optimization ProbIEMScoue e 47

B4, SCAIING ... eeeei ettt ettt e e e e e e e 50

6.5. Dynamic optimization of DAEs using direct collocation with CasADIcccoeeviiiiiinieiineeennn. 50
6.5.1. AlQOItNM OVEIVIEW ...ceiiiiii e et e e e e e et e ean s 50

B.5.2. EXAMPIES ...t 58

6.5.3. Investigating OptimiZation PrOgrESScuu i ieeu ittt e e e e aeens 80

6.5.4. Eliminating algebraiC variables ..o 84

6.6. Derivative-Free Model Calibration of FIMUSuiiiiiiiiiiiiii e 89

7. Graphical User Interface for Visualization 0Of RESUITScoeuiiiiiiiiiii e 96
T L PLOE GUI ettt 96

4% B 1 01 oo [0 1o o O PP PTTRP 96

A T o 1 © o 1 o] o < T PO UPT 98

T.0.3. VIBW OPLIONS ..ottt ettt e et e et e et e e e e e et e e et e ean e eeas 102

T4 EXAMPIE oo e e e 102

8. The Optimica Language EXTENSIONcieuu ittt et e e e e e e eanaaees 104
8.1. A new specialized class: OPtIMIZALIONccuuiiiiiii e 105

8.2. Attributes for the built in ClasS REaloooiiiiiii 105

8.3. A Function for accessing instant values of avariable ..o, 106

8.4, ClaSS GIITIDULES ittt e e r e 106

8.5, CONSITAINTS ... ceeetti ettt ettt ettt ettt e ettt e e et et e e et et et e e e e e e e eenn 107

9. LIMITALIONS ...ttt ettt et et enaas 109
E N el a0T o1 1= e o o] TP 111
A.Ll List of options that can be set in COMPIEYooeuiiiiii e 111

B. Using External FUNCEIONS iN MOOEIICAccuuiiiieieei e 119
=30 I g o [F ot o o TP PP PPPPPTPPSPPPIN 119

JModelica.org User Guide

A 1o =1V BT (=i (o o AU 119
B3, G . ittt et e et e e e et et aa b 119
. REIEASE NOLES ...ttt e e ettt 120
C.1. Release notes for IModelicaorg VEISION 2.1ieuniiiiieei e 120
L3 5 T o [T 011 £ PSPPI 120

C.2. Release notes for IModelica.org VEIrSION 2.0ieuniiiieeie e e ean e 120
(O3 W o [To 011 (= PSPPI 120
O 0111 o 1 [S PPN 120

C.3. Release notes for IModelica.org VErSION 1.17ooeuiiiiiiieiiieeii e e e 121
(ORC B [To 011 £ PSPPI 121
ORI 0111 o1 [S PP 122

C.4. Release notes for IModelica.org VErsion 1.16ccuuiiiuiiiiiiiiiie e e eaae e 122
(O3 B o [T 011 £ PSPPI 122
O O] 111 o] [S PP 122
(O RS A @0 1111 1114 o] o EP TSP 123

C.5. Release notes for IModelica.org VErsion 1.15oouiiiiiiiiiiie e ea e 123
(O3S W o [To 011 (= PSP 123
O 0111 o 1 [S PPN 124
C.5.30 SIMUIBLTON vttt e e et e 125

C.6. Release notes for IModelica.org VErsion 1.14ocuuiiiuiiiiiieie e 125
(O3 3 W o [To 011 £ PSP 125
O3 0111 o 1 [S TP 125
C.8.3. SIMUIBLTON ..ttt et e e e e 126
(O I @0 1111 114 o] o EO PSPPI 126

C.7. Release notes for IModelicaorg Version 1.13oouniiiiiiiiieeii e 126
(O 5 T o [T 011 £ PSP 126

O A 0111 o] 1= £ TSP 127
C.7.30 SIMUIBLTON .ttt e e e e e 127
O B @0 111 114 o] o EO PSPPI 127

C.8. Release notes for IModelica.org VErsion 1.12ccuuiiiuiiiiiiieiii e ea e 128
(O S B o [To 011 £ PSPPI 128

(O I 01110] 1= £ TSP 128
C.8.3. SIMUIBLION ...ttt e e e 128
C.8.4. CONLIDULOIS ...ttt ettt et et e e e et e e e e e eeens 129

C.9. Release notes for IModelica.org VErsion 1.11ccouuiiiuiiiiiiiiei e et eee e 130
(O B o [To 011 (= PSP 130
O 01110] 1= £ TSP 130
C.9.3. SIMUIBLTON .ttt et 131
C.9.4. CONLITDULOIS ...ttt ettt e e e ettt e e e e et e e e et e eeenns 131
C.10. Release notes for IModelica.org VErsion 1.10c.uuiiuiiiiiieiii e 132
C.10.1. HIGhIIGNES ..ttt e e e et 132
C.10.2. COMPIIELS ..ottt e e e et e et e a e e eaa s 132

Vi

JModelica.org User Guide

C.11.
C.12.

C.13.

C.14.

C.15.

C.16.

C.17.

C.18.

C.10.3. PYLNON ... 133
C.10.4, SIMUIBEION ..eeeeit ettt et ettt et e et e e e e e 134
(O [0 RNN @111 40 2= 1 [o o H PP 134
C.10.6. CONEIIBULOISceeeiteeeeet ettt e e e e eenes 134
Release notes for IModelica.org version 1.9.1 ... 136
Release notes for IModelica.org Version 1.9 136
C.12.2, HIGhIIGNES ..o ettt e e e e e e e 136
C.12.2. COMPIIELS ..t e e e e e et e e e e eaa s 136
C.A2.3 PYLNON ...t 137
C.L2.4, SIMUIBEION ..ttt ettt et e e et e e e e e era s 137
(O AT @111 41 2= 1 [0 o H PP 138
C.12.6. CONMIIBULOISeeeit ettt et e e e e 138
Release notes for IModelica.org Version 1.8.1couuiiiiiiii e 139
Release notes for IModelica.org VErsion 1.8c.. i 139
C.1A.2 HIGhIIGNES ..ttt e e e e e bbb e 139
C.14.2. COMPIIELS .. ettt e e et e et e e e e eaa s 139
C.LA.3. PYLNON ... 140
(O R N @ 0111 41 T2= 1 [0 o H PP 140
C.1A.5, CONIIBULOIS ...ttt ettt e e e e eenes 140
Release notes for IModelica.org VErSioN 1.7oooun i 141
C.A5.1. HIGhIIGNES ..ottt e e e e e e 141
C.15.2. COMPIIELS ..ottt e e e e et e e e e eaa s 142
CLA5.3. PYLNON ...t 142
C.15.4, SIMUIBEION ..ttt ettt ettt e e e e e 143
(O LS @ 111 40 2= 1 o o H PP 143
C.15.6. CONEIIBULOIScoeiiieeeee et e e e e e e 143
Release notes for IModelica.org VErsion 1.6c...oieuniiiiiiiiieii e 144
O Ko I o [To 0] T | £ PP PTRUP 144
C.16.2. COMPIIENS ...t ettt e e e e et e et e ean s 144
C.1B.3. PYLNON ...t 145
(O SR N @ o111 41 2= 1 o o H PSP 145
C.16.5. Eclipse Modelica PlUGINoeeiiiiieee e e e e e e 146
C.16.6. CONEIIDULOISoeeiieeeeet ettt e e e e e 146
Release notes for IModelica.org VErsion 1.5 ... 147
C.A7.2. HIGhIIGNES <. ettt e e e e bt 147
C.L7.2. COMPIIELS .. ettt e e et e et e e e e eaa s 147
CLL7.3. SIMUIBEION ..ttt ettt et et e e e e e 148
C.17.4. INitialization Of DAEScoovuiiiiiiiii et 148
(O AT © o111 41 2= 1 [o o H PP 148
C.L7.6. CONMIIBULOIS ...ttt et e e e enees 148
Release notes for IModelica.org VErsion 1.4 ... 149
C.A8.1. HIGhIIGNES <. ettt e e et 149

vii

JModelica.org User Guide

C.18.2. COMPIIENS ..o et e et e et e et e e e 149
C.18.3. Python iNLEITACE .. .ccuuieiie e et e 150
C.18.4, SIMUIBLION ..ceeeit ettt ettt et ettt et et e et e e e e e 151
C.18.5. CONMIIBULOISeeeiteeeee et e e e enees 151
C.19. Release notes for IModelica.org VEIrSION 1.3iiuiiiii et e e eaae e 152
C.19.2. HIGhIIGNES ..o et e e e et 152
C.19.2. COMPIIENS ..ottt et e e et e e e e e e 152
C.19.3. IModelica.org Model Interface (IMI)oeunieiiiii e 154
C.19.4. ASSIMUIO ..ttt e e e e et e bbb e e e e e e e 154
C.19.5. FMI COMPIIBNCEn ettt e e e e e e eees 154
C.19.6. XML MOCEl EXPOITeneete ettt et e e e aeens 154
C.19.7. Python iNEEGIaLiONc..u it e e e e e et e e e e eaa s 155
C.19.8. CONMIIBULOISeeiit ettt ettt e e e nees 155
C.20. Release notes for IMOdeliCa.org VEISION 1.2oouuiiii et e et eae e 156
C.20.2. HIGhIIGNES ...ttt ettt e e e et 156
C.20.2. COMPIIELS ... ettt e e et e et e e et e eeaa s 156
C.20.3. The IModelica.org Model Interface (IMI) ... 158
C.20.4. The collocation optimization algorithm ... 159
C.20.5. New simulation package: ASSIMUIOocouuiiiiiii e 159
C.20.6. FIMI COMPLIBNCE ... ettt et e e et e e e e e e ees 159
C.20.7. XML MOCEl EXPOTT ...ttt ettt e e aeens 159
C.20.8. Python iNTEGIatioNcieueiiiiiei e et e e e e e e e ea e 159
C.20.9. CONLIIBULOISceeeitee ettt et e e enes 160

=] ol FTeTe ="] Y U TUPT PRSP 161

viii

Chapter 1. Introduction
1.1. About JModelica.org

JModelica.org is an extensible Modelica and FMI-based open source platform for optimization, simulation and
analysis of complex dynamic systems. The main objective of the project is to create a viable open source platform
for simulation and optimization of Modelica models, while offering aflexible platform serving as avirtual lab for
algorithm devel opment and research. IModelica.org isintended to provide aplatform for technology transfer where
industrially relevant problems can inspire new research and where state of the art algorithms can be propagated
from academia into industrial use. IModelica.org is aresult of research at the Department of Automatic Control,
Lund University, [Jak2007] and is now maintained and developed by Modelon AB in collaboration with academia.

JModelica.org offers the following key features:

» A Modelicacompiler compliant with the M odelicalanguage specification 3.2.2 and supporting the full Modelica
Standard Library version 3.2.2 build 3. The compiler generates Functional Mock-up Units (FMUSs), including
Model Exchange and Co-simulation as well asversion 1.0 and 2.0 of the FMI standard.

« Dynamic simulation algorithms for integration of large-scale and stiff systems. Algorithms include CVode and
Radau.

» Dynamic optimization agorithms based on collocation for solving optimal control and estimation problems.
Dynamic optimization problems are encoded in Optimica, an extension to Modelica.

A derivative-free model calibration algorithm to estimate model parameters based on measurement data.

 Scripting APIsin Python are available to script automation of compilation, simulation and optimization of Mod-
elicaand FM| models.

1.2. Mission Statement

To offer a community-based, free, open source, accessible, user and application-oriented Modelica environment
for optimization and simulation of complex dynamic systems, built on well-recognized technology and supporting
major platforms.

1.3. Technology

JModelica.org relies on the modeling language Modelica. Modelica targets modeling of complex heterogeneous
physical systems, and is becoming a de facto standard for dynamic model development and exchange. There are
numerous model librariesfor Modelica, both free and commercial, including thefreely available Modelica Standard
Library (MSL).

http://www.modelica.org

Introduction

A unique feature of IModelica.org is the support for the language extension Optimica. Optimica enables users to
conveniently formulate optimization problems based on Modelica models using simple but powerful constructs
for encoding of optimization interval, cost function and constraints.

The IModelica.org compilers are developed in the compiler construction framework JastAdd. JastAdd is based on
anumber of different concepts, including object-orientation, aspect-orientation and reference attributed grammars.
Compilersdeveloped in JastAdd are specified in terms of declarative attributes and equations which together forms
an executable specification of the language semantics. In addition, JastAdd targets extensible compiler develop-
ment which makes it easy to experiment with language extensions.

For user interaction IModelica.org relies on the Python language. Python offers an interactive environment suit-
able for scripting, development of custom applications and prototype agorithm integration. The Python packages
Numpy and Scipy provide support for numerical computation, including matrix and vector operations, basic linear
algebra and plotting. The IModelica.org compilers as well as the model executables and humerical algorithms
integrate seamlessly with Python and Numpy.

JModelica.org offers support for the Functional Mock-up Interface (FMI) standard. FMI specifies a format for
exchange of compiled dynamic models and it is supported by alarge number of modeling and simulation tools,
including established Modelica tools such as Dymola, OpenModelica, and SimulationX. FMI defines a model
execution interface consisting of aset of C-function signaturesfor handling the communication between the model
and a simulation environment. Models are presented as ODEs with time, state and step events. FMI also specifies
that al information related to a model, except the equations, should be stored in an XML formated text-file. The
format is specified in the standard and specifically contains information about the variables, names, identifiers,
types and start attributes. A model isdistributed in azip-file with the extension '.fmu’, these zip-files containing the
models are called FM Us (Functional Mock-up Units). FMI version 1.0 and 2.0 specifiestwo types of FMUs, either
Model Exchange or Co-Simulation. The difference between them is that in a Co-Simulation FMU, the integrator
for solving the systemis contained in the model whilein an Model Exchange FMU, an external integrator is needed
to solve the system. The JModelica.org compiler supports export of FMUs. FMUs can be imported into Python
using the Python packages included in the platform.

http://jastadd.org
http://www.python.org/
https://www.fmi-standard.org/

Chapter 2. Installation
2.1. Supported platforms

JModelica.org is supported on Linux and Windows (7, 10) with 32-bit or 64-bit architectures.

2.2. Installation on Windows

Pre-built binary distributions for Windows are available in the Download section of www.jmodelica.org.

The Windows installer contains a binary distribution of IModelica.org, bundled with all required third-party soft-
ware components. A list of the third-party dependencies can be found in Section 2.2.1. The installer sets up a
pre-configured complete environment with convenient start menu shortcuts. Installation instructions are found in
Section 2.2.2.

2.2.1. Dependencies

As of IModelica.org version 1.9, al dependencies are bundled in the installer. They are listed below, each with
version number (where applicable) and link to corresponding web site.

» Applications
« Javal.7 (JRE)
* MinGW (gcc 4.7.2)
* Python2.7
* Libraries
e |popt 3.10.3
e SuperLU 4.1
* Beaver 0.9.6.1
. eXpat2.1.0
e Minizip
* MSL (Modelica Standard Library)

* SUNDIALS2.7.0

www.jmodelica.org
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.mingw.org
http://www.python.org/
https://projects.coin-or.org/Ipopt
http://crd.lbl.gov/~xiaoye/SuperLU/
http://beaver.sourceforge.net/
http://expat.sourceforge.net/
http://www.winimage.com/zLibDll/minizip.html
https://www.modelica.org/libraries
https://computation.llnl.gov/casc/sundials

Installation

* Zlib1.2.6
» CasADi

» Python packages
e Cython 0.23.4
* Distribute 0.6.35
* |Python4.1.1
»« JCC221
e JPype0.5.4.2
* Ixml 3.5.0
* matplotlib 1.5.1
* nose1.3.7
* NumPy 1.10.4
» Pyreadline2.1
* SciPy 0.17.0
» wxPython 3.0.2.0

2.2.2. Installation

Follow these step-by-step instructions to install IM odelica.org using the Windows binary distribution.

1. Download a IModelica.org Windows binary installer and save the executable file somewhere on your com-
puter.

2. Runthefile by double-clicking and selecting "Run" if prompted with a security warning. Thiswill launch an
installer which should be self-explanatory.

2.2.3. Verifying the installation

Test theinstallation by starting al Python or pylab shell from the IM odelica.org start menu and run afew exampl es.
Starting the Python session from the Windows start menu will set all the environment variables required to run
the IModelica.org Python interface.

http://www.zlib.net/
http://casadi.org
http://www.cython.org/
http://packages.python.org/distribute/
http://ipython.org/
https://pypi.python.org/pypi/JCC/
http://jpype.sourceforge.net
http://lxml.de/
http://matplotlib.org/
https://nose.readthedocs.org/en/latest/
http://www.numpy.org/
http://packages.python.org/pyreadline/
http://www.scipy.org/
http://www.wxpython.org
http://www.jmodelica.org/binary

Installation

Inport and run the fm _bouncing_ball exanple and plot results
from pyfm . exanpl es i nport fm _bouncing_bal
fm _bounci ng_bal | . run_deno()

Inport and run the CSTR exanpl e using CasADi and plot results
from pyj m . exanpl es i nport cstr_casad
cstr_casadi . run_deno()

2.2.4. Compilation from sources

For compiling IModelica.org from sources on Windows there is a Software Devel opment Kit (SDK) available for
download. The SDK is a bundle of tools used to build IModelica.org from source code on Windows, please see
the SDK User's guide, which can be reached from the download site, for more information.

2.3. Installation on Linux systems

This section describes a procedure for compiling JM odelica.org from sources on Linux. Theinstructions have been
verified to work on Ubuntu Linux release 16.04, 64bit.

2.3.1. Prerequisites

2.3.1.1. Installing pre-compiled packages

It is convenient to use a package management system, if available, of the Linux distribution to install the prereg-
uisites. On Ubuntu systems, the apt-get command line program may be used:

sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y

nstal |l g++

nstal | subversion
nstall gfortran
nstal |l ipython
nstal | crmake

nstall swig

nstal |l ant

nstal | openj dk- 8-j dk
nstal | python-dev
nstal | pyt hon- nunpy
nstal |l python-scipy
nstal |l python-matplotlib
nstall cython

nstal |l python-| xmn
nstal | python-nose
nstal | python-jpype
nstall zliblg-dev
nstal | |ibboost-dev

http://www.jmodelica.org/sdk

Installation

The following versions of each package have been tested and verified to work. Please note that in some cases, the

listed version is the minimum required.

Table 2.1 Package versions for Ubuntu

Package Version Note
g++ 5.4.0 Tested version
subver si on 1.9.3 Tested version
gfortran 5.4.0 Tested version
i pyt hon 5.3.0 Tested version
cmake 2.8.6 Minimum version
sSwWi g 3.0.8 Tested version
ant 1.8.2 Tested version
pyt hon- dev 2.7.11 Tested version
pyt hon- nunpy 1.6.1 Tested version
pyt hon- sci py 0.9.0 Tested version
pyt hon-matplotlib 1.1.1 Tested version
cyt hon 0.15 Minimum version
pyt hon- | xm 2.3.2 Tested version
pyt hon- nose 1.1.2 Tested version
pyt hon-j pype 0.5.4.2 Tested version
zli blg- dev 1:1.2.8 Tested version
I i bboost - dev 1.58.0 Tested version
jcc 2.16 Minimum version

2.3.1.2. Compiling Ipopt

While Ipopt is available as a pre-compiled package for Ubuntu, it is recommended to build Ipopt from sources.
The I popt packages provided for Ubuntu have had flaws that prevented usage with IModelica.org. Also, compiling
Ipopt from sources is required when using the linear solvers MA27 or MA57 from the HSL library, since these
are not available as open source software.

First, download the I popt sources from https://projects.coin-or.org/l popt and unpack the content:

tar xvf |popt-3.10.2.t9z

Then, retrieve the third party dependencies:

https://projects.coin-or.org/Ipopt

Installation

cd | popt-3.10.2/ ThirdParty/ Bl as
./ get.Bl as

cd ../Lapack

./ get . Lapack

cd ../ Mnps

./ get. Munps

cd ../ Mtis

./lget. Metis

cd ../../

If you have access to the HSL solvers MA57 or MA27, copy their sources into the directory Thi rdParty/ HSL. In
the next step, configure and compile I popt:

nkdir build

cd build

../configure --prefix=/hone/ <user_name>/ <i popt _i nstal | ati on_| ocati on>
make install

where<user _name> and <i popt _i nstal | ati on_| ocat i on> arereplaced by the user directory and theinstallation
directory of choice for Ipopt.

2.3.1.3. Installing JModelica.org with WORHP (optional)

Asanalternativeto |POPT for optimization, the CasADi framework in JM odelica.org al so has support for the solver
WORHP. Notethat WORHP s closed source, but offersfree personal academic licenses. To compile IModelica.org
with support for WORHP, first obtain the WORHP binaries and a license file from http://www.worhp.de. Set the
environment variables $WORHP to your directory containing the binaries and $WORHP_LI CENSE_FI LE to your license
file.

Normally, thiswould be sufficient, but for now thefoll owing additional measuresare needed. Find thefollowing six
lines in $JMODELI CA_SRC/ Thi rdParty/ CasADi / CasADi / i nt er f ace/ wor hp/ wor hp_i nt er nal . cpp and remove
them:

addOpti on(" Cut Lengt h", OT_REAL, wor hp_p_. Cut Lengt h, "Scal i ng factor for Cut recovery
strategy");

addOpt i on(" Ma57Pi vot Thresh", OT_REAL, wor hp_p_. Ma57Pi vot Thresh, "Pi voti ng tol erance for MA57 =
CNTL(1)");

if (hasSet Option("CutlLength")) worhp_p_. CutLength = get Opti on(" Cut Length");

if (hasSet Option("Ma57Pi vot Thresh")) worhp_p_. Ma57Pi vot Thresh =
get Opti on(" Ma57Pi vot Thresh");

set Opti on(" Cut Lengt h", wor hp_p_. Cut Lengt h) ;

set Opti on(" Ma57Pi vot Thresh", wor hp_p_. Ma57Pi vot Thr esh) ;

Find theline

opti on(W TH_WORHP " Conpi |l e the WORHP interface" OFF)

in $JMODELI CA_SRC/ Thi r dPar t y/ CasADi / CasADi / CMakeli st s. t xt and change OFF to ON.

http://www.worhp.de

Installation

2.3.2. Compiling

Make sure that all prerequisites are installed before compiling the IModelica.org platform. First, check out the
JModelica.org sources:

svn co https://svn.jnodelica.org/trunk JModelica.org
Then configure and build IModelica.org:

cd JModelica.org

nmkdi r build
cd build
../configure --prefix=/hone/ <user_nanme>/ <j nodel i ca_i nstal |l _| ocation> \

--wi t h-i popt =/ home/ <user _nane>/ <i popt _i nstal | _| ocati on>
make install
make casadi _interface

where <user _nanme> and <j nodel i ca_i nst al | ati on_| ocati on> are replaced by the user directory and the in-
stallation directory of choice for IModelica.org.

2.3.3. Testing JModelica.org

In order to verify that IModelica.org has been installed correctly, start an | Python shell using the command / horre/
<user _nane>/ <j nodel i ca_i nstal | _l ocati on>/ bi n/j m_i pyt hon and run afew examples:

Inport and run the fm _bouncing_ball exanple and plot results
from pyfm . exanpl es i nport fm _bouncing_ball
fm _bounci ng_bal | . run_deno()

Inport and run the CSTR exanpl e using CasADi and plot results
from pyj m . exanpl es i nport cstr_casadi
cstr_casadi . run_deno()

Chapter 3. Getting started

This chapter isintended to give a brief introduction to using the IModelica.org Python packages and will therefore
not gointo any details. Pleaserefer to the other chapters of thismanual for moreinformation on each specific topic.

3.1. The JModelica.org Python packages

The IModelica.org Python interface enables users to use Python scripting to interact with Modelica and Optimica
models. The interface consists of three packages:

* PyModelica Interface to the compilers. Compile Modelica and Optimica code into model units, FMUs. See
Chapter 4 for more information.

* PyFMI Work with models that have been compiled into FMUs (Functional Mock-up Units), perform simula-
tions, parameter manipulation, plot results etc. See Chapter 5 for more information.

* PyJMI Work with models that are represented in symbolic form based on the automatic differentiation tool
CasADi. This package is mainly used for solving optimization problems. See Chapter 6 for more information.

3.2. Starting a Python session
Starting a Python session differs somewhat depending on your operating system.

3.2.1. Windows

If you are on Windows, there are three different Python shells available under the IModelica.org start menu.
» Python Normal command shell started with Python.

» |Python Interactive shell for Python with, for example, code highlighting and tab completion.

 pylab IPython shell which also loads the numeric computation environment PyL ab.

It is recommended to use either the IPython or pylab shell.

3.2.2. Linux

To start the IPython shell with pylab on Linux open atermina and enter the command:

> $JMODELI CA_HOVE/ bi n/j m_i pyt hon. sh - pyl ab

http://www.scipy.org/PyLab

Getting started

3.3. Running an example

The Python packages pyf mi and pyj m each contain a folder called exanpl es in which there are several Python
example scripts. The scripts demonstrate compilation, loading and simulation or optimization of models. The cor-
responding mode! files are located in the subdirectory fi I es. The following code demonstrates how to run such
an example. First a Python session must be started, see Section 3.2 above. The example scripts are preferably run
in the pylab Python shell.

The following code will run the RLC example and plot some results.

Inport the RLC exanpl e
from pyj m . exanpl es i nport RLC

Run the RLC exanple and plot results
RLC. run_deno()

Open RLC. py in atext editor and look at the Python code to see what happens when the script isrun.

3.4. Redefining the JModelica.org environment

When importingpyj mi or pynodel i ca in Python, thescript st ar t up. py isrunwhich setsthe environment used by
JModelica.org for the current Python session. For example, the environment variable JMODELI CA_HOME pointsat the
JModelica.org installation directory and | POPT_HOVE points at the | popt installation directory. These environment
variables setin st art up. py can be overridden by auser defined script: user _st art up. py.

The script st art up. py looksfor user _st art up. py in the folder

* $USERPROFI LE/ . j nodel i ca. or g/ (Windows)

* $HOVE/ . j nodel i ca. org/ (Unix)

If the script user _st art up. py is not found, the default environment variables will be used.

3.4.1. Example redefining IPOPT_HOME

The following step-by-step procedure will show how to redefine the JModelica.org environment variable
| POPT_HOME:

1. Gotothefolder $USERPROFI LE (Windows) or $HOVE (Linux). To find out where $USERPRCFI LE Or $HOVE points
to, open a Python shell and type:

import os
0s. envi ron[' USERPROFI LE'] /1 W ndows
0s. envi ron[' HOVE'] /1 Li nux

10

Getting started

2. Create afolder and nameit . j nodel i ca. or g (or openit if it aready exists)
3. Inthisfolder, create atext file and nameit user _start up. py.

4. Open thefile and type
environ['|POPT_HOVE']='<new path to | popt home>'

5. Save and close.

6. Check your changes by opening a Python shell, import pyj mi and check the | POPT_HOVE environment variable:

import pyjm
pyj m . environ[' | POPT_HOWE']

3.5. The JModelica.org user forum

Please use the IModelica.org forum for any questions related to IModelica.org or the Modelicalanguage. Y ou can
search in old threads to see if someone has asked your question before or start a new thread if you are a registered
user.

11

http://www.jmodelica.org/forum

Chapter 4. Working with Models In
Python

4.1. Introduction to models

Modelica and Optimica models can be compiled and loaded as model objects using the IModelica.org Python
interface. These model objects can be used for both simulation and optimization purposes. This chapter will cover
how to compile Modelica and Optimicamodels, set compiler options, load the compiled model in a Python model
object and use the model object to perform model manipulations such as setting and getting parameters.

4.1.1. The different model objects in JModelica.org

Thereare severa different kinds of model objectsthat can be created with IModelica.org: FMUMbdel (ME/ CS) (1/ 2)

(i.e. FMUModelME1, FMUModelCS1, FMUModelME2, and FMUModel CS2) and Opt i i zat i onPr obl em The
FMUMbdel (ME/ CS) (1/ 2) is created by loading an FMU (Functional Mock-up Unit), which is a compressed file
compliant with the FMI (Functional Mock-up Interface) standard. The Opt i ni zat i onPr obl emis created by trans-
ferring an optimization problem into the CasADi-based optimization tool chain.

FMUs are created by compiling Modelica models with IModelica.org, or any other tool supporting FMU export.
JModelica.org supports both export and import of FMUs for Model Exchange (FMU-ME) and FMUs for Co-
Simulation (FMU-CS), version 1.0 and 2.0. Generated FMUs can be loaded in an FMUMbdel (ME/ CS) 1 object in
Python and then be used for simulation purposes. Optimica models can not be compiled into FMUs.

Opt i mi zat i onPr obl em objects for CasADi optimization do not currently have a corresponding file format, but
aretransferred directly from the IM odelica.org compiler, based on Modelica and Optimicamodels. They contain a
symbolic representation of the optimization problem, which is used with the automatic differentiation tool CasADi
for optimization purposes. Read more about CasADi and how a Opt i mi zat i onPr obl emobject can be used for
optimization in Section 6.5 in Chapter 6.

4.2. Compilation

This section brings up how to compile a model to an FMU-ME / FMU-CS. Compiling a model to an FMU-ME /
FMU-CS will be demonstrated in Section 4.2.1 and Section 4.2.2 respectively.

For more advanced usage of the compiler functions, there are compiler options and arguments which can be mod-
ified. These will be explained in Section 4.2.4.

27?2, will go through some parts of the compilation process and how to perform these steps one by one.

12

http://casadi.org

Working with Models in Python

4.2.1. Simple FMU-ME compilation example

The following steps compile amodel to an FMU-ME version 1.0:

1. Import the IModelica.org compiler function conpi | e_f nu from the package pynodel i ca.
2. Specify the model and model file.

3. Perform the compilation.

Thisis demonstrated in the following code example:

Inport the conpiler function
from pynodel i ca i nport conpile_ fnu

Specify Modelica nmobdel and nodel file (.nmo or .nop)
nodel _name = ' nyPackage. myModel '
no_file = "' myMdel File. '

Conpile the nbdel and save the return argunent, which is the file nane of the FMJ

ny_fmu = conpil e_fm(nodel _name, no_file)

Thereisacompiler argumentt ar get that controlswhether the model will be exported asan FMU-ME or FMU-CS.
The default isto compilean FMU-ME, sot ar get does not need to be set in this example. The compiler argument
ver si on specifiesif the model should be exported asan FMU 1.0 or 2.0. Asthe default isto compilean FMU 1.0,
ver si on does not need to be set either in this example. To compile an FMU 2.0, ver si on should be setto* 2. 0' .

Once compilation has completed successfully, an FMU-ME 1.0 will have been created on the file system. The
FMU isessentialy a compressed file archive containing the files created during compilation that are needed when
instantiating a model object. Return argument for conpi | e_f mu is the file path of the FMU that has just been
created, thiswill be useful later when we want to create model objects. More about the FMU and loading models

can be found in Section 4.3.

In the above example, the model is compiled using default arguments and compiler options - the only arguments
set are the model class and file name. However, conpi | e_f mu has several other named arguments which can be
modified. The different arguments, their default values and interpretation will be explained in Section 4.2.4.

4.2.2. Simple FMU-CS compilation example

The following steps compiles a model to an FMU-CS version 1.0:

1. Import the IModelica.org compiler function conpi | e_f nu from the package pynodel i ca.
2. Specify the model and model file.

3. Settheargumenttarget = 'cs'

13

Working with Models in Python

4. Perform the compilation.

Thisis demonstrated in the following code example:

|l nmport the conpiler function
from pynodelica i nport conpile fnu

Specify Mdelica nmbdel and nodel file (.nmo or .nop)
nodel _nane = ' myPackage. myModel '
nmo_file = 'nyMdel File. o'

Conpil e the nodel and save the return argunment, which is the file nane of the FMJ
ny_fmu = conpil e_fmu(nodel _name, nmo_file, target='cs')

InaCo-Simulation FM U, theintegrator for solving the systemiscontained inthemodel. With an FMU-CSexported
with IModelica.org, two different solvers are supported: CVode and Explicit Euler.

4.2.3. Compiling from libraries

The model to be compiled might not bein astandalone. no file, but rather part of alibrary consisting of adirectory
structure containing several Modelicafiles. In this case, the file within the library that contains the model should
not be given on the command line. Instead, the entire library should to added to thelist of librariesthat the compiler
searches for classesin. This can be done in several ways (here library directory refers to the top directory of the
library, which should have the same name as the top package in the library):

» Adding the directory containing the library directory to the environment variable MODELI CAPATH. The compiler
will searchfor classesinal librariesfound in any onthedirectoriesin MODELI CAPATH. Inthiscasethef i | e_nane
argument of the compilation function can be omitted, assuming no additional Modelica files are needed.

» Giving the path to the library directory in the fil e_name argument of the compilation function. This allows
adding a specific library to the search list (as opposed to adding all libraries in a specific directory).

By default, the script starting a IModelica.org Python shell sets the MODELI CAPATH to the directory containing the
version of the Modelica Standard Library (MSL) that isincluded in the installation. Thus, all classesin the MSL
are available without any need to specify its location.

The Python code example below demonstrates these methods:

| nport the conpiler function
from pynodel i ca i nport conpile_fnu

Conpil e an exanpl e nodel fromthe MSL
frmul = conpile_fmu(' Model i ca. Mechani cs. Rot ati onal . Exanpl es. First')

Conpile a nodel fromthe library M/Library, located in C\MLibs
fru2 = conmpil e_frnu(' MyLi brary. MyModel ', ' C./ M/Li bs/ M/Li brary')

14

Working with Modelsin Python

4.2.4. Compiler settings

The compiler function arguments can be listed with the interactive help in Python. The arguments are explained
in the corresponding Python docstring which is visualized with the interactive help. This is demonstrated for
conpi | e_f mu below. The docstring for any other Python function for can be displayed in the same way.

4.2.4.1. compile_fmu arguments

The conpi | e_f mu arguments can be listed with the interactive help.

Display the docstring for conpile frmu with the Python conmand ' hel p'
from pynodel i ca i nport conpile_fnu

hel p(conpi | e_f nmu)

Hel p on function conpile_fmu in nodul e pynodel i ca. conpil er:

conpi l e_fru(cl ass_nane, file_nanme=[], conpiler="auto', target="me', version='1.0",
conpi | er _options={}, conpile_to="."', conpiler_|og_I|evel =" warning',
separ at e_process=True, jvmargs='")

Conpi |l e a Mbdelica nodel to an FMJ.

A nodel class name nust be passed, all other argunents have default val ues.
The different scenarios are:

* Only class_nane is passed:
- Class is assuned to be in MODELI CAPATH.

* class_nane and file_nane is passed:

- file_name can be a single path as a string or a list of paths
(strings). The paths can be file or library paths.

- Default conpiler setting is 'auto' which neans that the appropriate
conpiler will be selected based on nodel file ending, i.e.
Model i caConpiler if a .nmo file and OptimcaConpiler if a .nop file is
found in file_nane |ist.

The conpiler target is 'me' by default which neans that the shared
file contains the FM for Mdel Exchange API. Setting this paraneter to
‘cs' will generate an FMJ containing the FM for Co-Sinul ati on API.

Par aneters: :

cl ass_nane --
The nane of the nodel cl ass.

file_nane --
A path (string) or paths (list of strings) to nodel files and/or
libraries.
Default: Enpty Iist.

conpiler --
The conpiler used to conpile the nodel. The different options are:

15

Working with Modelsin Python

‘auto': the conpiler is selected autonatically depending on
file ending
- 'modelica': the ModelicaConpiler is used
- 'optimca': the OptimcaConpiler is used
Defaul t: 'auto'

target --
Conpi |l er target. Possible values are 'ne', 'cs' or 'ne+cs'.
Default: 'nme'

version --
The FM version. Valid options are '1.0' and '2.0'.
Default: '1.0

conpi |l er _options --
Options for the conpiler.
Default: Enpty dict.

conpile_to --
Specify target file or directory. If file, any internediate directories
will be created if they don't exist. If directory, the path gi ven nust
exi st.
Default: Current directory.

conpiler_log |evel --
Set the logging for the conpiler. Takes a comma separated list with
|l og outputs. Log outputs start with a flag :'warning'/'w,
‘error'/'e', "info'/'i' or 'debug'/'d . The log can be witten to file
by appended flag with a colon and file nane.
Def aul t: ' warni ng'

separ at e_process --
Run the conpilation of the nbdel in a separate process.
Checks the environnent variables (in this order):
1. SEPARATE_PROCESS JVM
2. JAVA HOVE
to |ocate the Java installation to use.
For exanple (on Wndows) this could be:
SEPARATE_PROCESS JVM = C:\ Program Fi |l es\ Java\j dk1. 6. 0_37
Default: True

jvmargs --
String of argunments to be passed to the JVM when conpiling in a
separate process.
Default: Enpty string

Returns: :

A conpilation result, represents the name of the FMJ whi ch has been
created and a |list of warnings that was raised.

16

Working with Models in Python

4.2.4.2. Compiler options

Compiler options can be modified using the conpi I e_f mu argument conpi | er _opti ons. Thisis shown in the
example below.

Conpile with the conpiler option 'enable_variable_scaling" set to True

Inport the conpiler function
from pynodelica i nport conpile_fnu

Specify nodel and nodel file
nodel _nanme = ' nyPackage. myModel '
no_file = "' myMdel File.no'

Conpile
ny_fmu = conpil e_fnm(nodel _nane, no_file,
conpi | er _opti ons={"enabl e_vari abl e_scal i ng": True})

There are four types of options: string, real , i nt eger and bool ean. The complete list of options can be found
in Appendix A.

4.3. Loading models

Compiled models, FMUs, are loaded in the IModelica.org Python interface with the FMUMbdel (ME/ CS) (1/ 2)
class from the pyf mi module, while optimization problems for the CasADi-based optimization are transferred
directly intothe Opt i i zat i onPr obl emclassfrom the pyj ni module . Thiswill be demonstrated in Section 4.3.1
and Section 4.3.2.

The model classes contain many methods with which models can be manipulated after instantiation. Among the
most important methods arei ni ti al i ze and si mul at e, which are used when simulating. These are explained in
Chapter 5 and Chapter 6. For more information on how to use the Optimi zationProblem for optimization purposes,
see Chapter 6. The more basic methods for variable and parameter manipulation are explained in Section 4.4.

4.3.1. Loading an FMU

An FMU file can beloaded in IModelica.org with the method | oad_f nu inthe pyf ni module. The following short
example demonstrates how to do thisin a Python shell or script.

Inport |oad_fmu from pyfm
frompyfm inmport |oad_fmu
nyModel = | oad_fmu(' myFMJ. f nu')

| oad_f mu returns a class instance of the appropriate FM U type which then can be used to set parameters and used
for simulations.

17

Working with Models in Python

4.3.2. Transferring an Optimization Problem

An optimization problem can be transferred directly from the compiler in IModelica.org into the class Opt i ni za-
ti onProbl eminthepyj m module. The transfer is similar to the combined steps of compiling and then loading an
FMU. The following short example demonstrates how to do thisin a Python shell or script.

| nport transfer_optim zation_probl em
frompyjm inmport transfer_optim zation_problem

Specify Modelica nodel and nodel file
nodel _nane = ' nyPackage. myModel '
no_file = "'myMdel File.no'

Conpile the nodel, return argument is an Optim zati onProbl em
nyModel = transfer_optim zati on_probl em(nodel _nane, no_file)

4.4. Changing model parameters

Model parameters can be altered with methods in the model classes once the model has been loaded. Some short
examplesin Section 4.4.1 will demonstrate this.

4.4.1. Setting and getting parameters

The model parameters can be accessed with viathe model classinterfaces. It ispossible to set and get one specific
parameter at atime or awhole list of parameters.

The following code example demonstrates how to get and set a specific parameter using an example FMU model
from the pyj i . exanpl es package.

Conpile and | oad the nodel

from pynodelica i nport conpile_ fnu

frompyfm inport |oad_fnu

ny_fmu = conpile fmu('RLC Circuit',' RLC Circuit.nn')
rlc_circuit = |oad_f mu(ny_fnu)

Get the value of the paraneter 'resistor.R and save the result in a variable
"resistor_r'
resistor_r =rlc_circuit.get('resistor.R)

Gve 'resistor.R a new val ue
resistor_r = 2.0
rlc_circuit.set('resistor.R, resistor_r)

The following example demonstrates how to get and set a list of parameters using the same example model as
above. The model is assumed to already be compiled and loaded.

Create a list of paraneters, get and save the corresponding values in a variable 'val ues'
vars = ['resistor.R, 'resistor.v', 'capacitor.C, 'capacitor.v']

18

Working with Models in Python

values = rlc_circuit.get(vars)

Change sone of the val ues
val ues[0] = 3.0

values[3] = 1.0
rlc_circuit.set(vars, val ues)

4.5. Debugging models

The JModelica.org compilers can generate debugging information in order to facilitate localization of errors. There
are three mechanisms for generating such diagnostics. dumping of debug information to the system output, gen-
eration of HTML code that can be viewed with a standard web browser or logs in XML format from the non-
linear solver.

4.5.1. Compiler logging

The amount of logging that should be output by the compiler can be set with the argument conpi | er _1 og_I evel
to the compile-functions (conpi 1 e_f mu andalsot r ansf er _opti mi zat i on_pr obl em). Theavailableloglevelsare
“war ni ng' (default), error','info', verbose' and' debug' which can aso bewrittenas'w ,'e',"i', v'
and' d' respectively. The following example demonstrates setting the log level to ' i nf o' :

Set conpiler log level to 'info'
conpi | e_fmu(' myModel ', ' nyModel s. no', conpiler_log_|evel ="info')

Thelog is printed to the standard output, normally the terminal window from which the compiler isinvoked.

The log can also be written to file by appending the log level flag with a colon and file name. This is shown in
the following example:

Set conpiler log level to info and wite the log to a file |og.txt
conpi l e_frmu(' myModel ', 'nyModel s. no', conpiler_log level="i:log.txt")

It is possible to specify several log outputs by specifying a comma separated list. The following example writes
log warnings and errors (log level ' war ni ng' or ' w) to the standard output and a more verbose logging to file
(loglevel "info or'i'):

Wite warnings and errors to standard output and the log with log level info to |og.txt
conpi l e_frmu(' myModel ', 'nyModels.np', conpiler _log level="wi:log.txt")

4.5.2. Runtime logging

4.5.2.1. Setting log level

Many eventsthat occur inside of an FMU can generate |og messages. The log messages from the runtime are saved
in afilewith the default name <FMJU name>_1 og. t xt . A log file name can also be supplied when loading an FM U,
thisis shown in the example below:

19

Working with Models in Python

Load node
nodel = | oad_fmu(frmu_nane, log file_nanme=" M/Log. txt")

How much information that is output to the log file can be controlled by setting the 1 og_I evel argument
to I oad_fmu. 1 og_l evel can be any number between 0 and 7, where O means no logging and 7 means the
most verbose logging. The log level can also be changed after the FMU has been loaded with the function
set _l og_l evel (I evel). Setting thel og_I evel isdemonstrated in the following example:

Load nodel and set log level to 5
nodel = | oad_f mu(fmu_nane, |og_| evel =5)

Change log level to 7
nodel . set _| og_I| evel (7)

If the loaded FMU isan FMU exported by JModelica.org, the amount of logging produced by the FMU can aso
be altered. Thisis done by setting the parameter _| og_I evel inthe FMU. Thislog level ranges from 0to 7 where
0 represents the least verbose logging and 7 the most verbose. The following example demonstrates this:

Load nodel (with default log |evel)
nmodel = | oad_f mu(f mu_nane)

Set amount of | oggi ng produced to the nbst verbose
nodel . set (' _l og_l evel ', 6)

Change log level to 7 to be able to see everything that is being produced
nodel . set _| og_I| evel (7)

4.5.2.2. Interpreting logs from FMUs produced by JModelica.org

In IModelica.org, information islogged in XML format, which ends up mixed with FMI Library output in the re-
sulting log file. Example: (the following examples are based on the example pyj mi . exanpl es. | ogger _exanpl e.)

1 ...

2 FML: nodule = FMCAPI, log level =5: Calling fmilnitialize

3 FML: nodule = Mdel, log level = 4: [INFQ [FMJ status: OK] <Equati onSol ve>Mbde
equations eval uati on i nvoked at<val ue name="t"> 0. 0000000000000000E+00</ val ue>
4 FML: nodule = Model, log level = 4: [INFQ[FMJ status: K]

<Bl ockEventIterations>Starting bl ock (local) event iteration at<val ue name="t">
0. 0000000000000000E+00</ val ue>i n<val ue name="bl ock">0</ val ue>

5 FML: nodule = Model, log level = 4: [INFQ[FMJ status: K] <vector nane="ivs">
0. 0000000000000000E+00, 0. 0000000000000000E+00, 0. 0000000000000000E+00</
vect or >
6 FML: nodule = Model, log level = 4: [INFQ[FMJ status: OK] <vector nane="sw tches">
0. 0000000000000000E+00, 0. 0000000000000000E+00, 0. 0000000000000000E
+00, 0. 0000000000000000E+00</ vect or >
7 FML: nodule = Model, log level = 4: [INFQ[FMJ status: K] <vect or
nanme="bool eans" ></ vect or >
8 FML: nodule = Model, log level = 4: [INFQ[FMJ status: K] <Bl ockl terati on>Loca
iteration<val ue name="iter">1</val ue>at <val ue name="t"> 0. 0000000000000000E+00</
val ue>

20

Working with Models in Python

14 FM L: nodul e
15 FM L: nodul e
16 ...

</matrix>
</ Jacobi anUpdat ed>

Model, | og | evel
Model , | og | evel

4: [INFQ [FMJ st at us:
4: [INFQ [FMJ st at us:

9 FML: nodule = Model, log level = 4: [INFQ[FMWMJ status: OK]

<Jacobi anUpdat ed><val ue nane="bl ock">0</val ue>

10 FM L: nodule = Model, log level = 4: [INFQ[FMJ status: OK] <matri x

nanme="j acobi an" >

11 FM L: nodule = Model, log level = 4: [INFQ [FMJ status: K]

-1. 0000000000000000E+00, 4. 0000000000000000E+00, 0. 0000000000000000E+0Q0;

12 FM L: nodule = Model, log level = 4: [INFQ [FMJ status: K]

-1. 0000000000000000E+00, -1. 0000000000000000E+00, -1. 0000000000000000E+00;

13 FM L: nodule = Model, log level = 4: [INFQ [FMJ status: K]

-1. 0000000000000000E+00, 1. 0000000000000000E+00, -1. 0000000000000000E+00;
K]
]

The log can be inspected manually, using general purpose XML tools, or parsed using the toolsin pyj mi . | og. A
pure XML file that can be read by XML tools can be extracted with

Extract the log file XML contents into a pure XM_ file
pyjm .l og.extract_jm _|og(dest_xm file_nanme, |og_file_nane)

The XML contentsin the log file can also be parsed directly:

Parse the entire XM | og
log = pyjm.log.parse_jm _|og(log_file_name)

I og Will correspond to the top level log node, containing al other nodes. Log nodes have two kinds of children:
named (with anarmre attribute in the XML file) and unnamed (without).

» Named children are accessed by indexing with a string: node[' t'], or ssimply dot notation: node. t .
» Unnamed children are accessed as alist node. nodes, or by iterating over the node.

Thereis also a convenience function gat her _sol ves to extract common information about equation solvesin the
log. This function collects nodes of certain types from the log and annotates some of them with additional named
children. The following example is from pyjmi.examples.logger_example:

1 # Parse the entire XM | og
2 log = pyjm.log.parse_jm _|log(log_file_nane)
3 # Gather information pertaining to equation solves

4 sol ves = pyjm .|l og.gather_sol ves(l og)

5

6 print

7 print 'Number of solver invocations:', | en(sol ves)

8 print '"Tine of first solve:', sol ves[0] . t

9 print 'Number of block solves in first solver invocation:', |en(solves[O0].block_sol ves)

10 print 'Nanes of iteration variables in first block solve:',
sol ves[0] . bl ock_sol ves[0] . vari abl es

11 print 'Mn bounds in first block solve:"',

sol ves[0] . bl ock_sol ves[0] . m n

12 print 'Max bounds in first block solve:',

sol ves[0] . bl ock_sol ves[0] . max

21

Working with Models in Python

13 print 'Initial residual scaling in first block solve:',
sol ves[0] . bl ock_sol ves[0] .initial _residual _scaling

14 print 'Nunber of iterations in first block solve:',

| en(sol ves[0] . bl ock_sol ves[0] . iterations)

15 print

16 print 'First iteration in first block sol ve:

17 print ' Iteration variables:',

sol ves[0] . bl ock_sol ves[0] .iterations[0].ivs

18 print ' Scaled residuals:',

sol ves[0] . bl ock_sol ves[0] .iterations[0].residuals

19 print ' Jacobian:\n',

sol ves[0] . bl ock_sol ves[0] .iterations[0].]jacobian

20 print ' Jacobian updated in iteration:',

sol ves[0] . bl ock_sol ves[0] .iterations[0].]jacobian_updat ed
21 print ' Residual scaling factors:',

sol ves[0] . bl ock_sol ves[0] .iterations[0].residual _scaling
22 print ' Residual scaling factors_updated:',

sol ves[0] . bl ock_sol ves[0] .iterations[0].residual _scaling_updated
23 print ' Scaled residual norm',

sol ves[0] . bl ock_sol ves[0] .iterations[0].scal ed_residual _norm

4.5.3. Compiler Diagnostic Output

By setting the compiler option generate_ht n _di agnosti cs to true, a number of HTML pages contain-
ing diagnostics are generated. The HTML files are generated in the directory Mbdel _Nane_di agnosti cs,
where Mbdel _Nare is the name of the compiled model. As compared to the diagnostics generated by the
conpi | er _l og_I evel argument, the HTML diagnostics contains only the most important information, but it also
providesabetter overview. Opening thefileMbdel _Nane_di agnost i cs/i ndex. ht nl inaweb browser, resultsina
page with information on number of variables, parameters and equations aswell as other statistics about the model.

Notethat some of theentriesin Mbdel _Nane_di agnosti cs/ i ndex. ht m , including Pr obl ens, Fl at t ened nodel ,
Connection sets, Transfornmed nodel ,Ali as sets,BLT di agnostics table,BLT for DAE Systemand BLT
for Initialization Systemarelinksto sub pages containing additional information. For example, the BLT
for DAE System page contains information about in which order the model equations are evaluated and which
blocks are present after compilation.

Additionally there is atable view of the BLT. It can be found on the BLT di agnostics tabl e page. It provides
agraphical representation of the BLT. The generation of the BLT di agnostics tabl e islimited to 300 equations
due to the complexity of the graph.

22

Chapter 5. Simulation of FMUs In
Python

5.1. Introduction

JModelica.org supports simulation of models described in the Modelica language and models following the FMI
standard. The simulation environment uses Assimulo as standard which is a standal one Python package for solving
ordinary differential and differential algebraic equations. Loading and simulation of FMUs has additionally been
made available as a separate Python package, PyFMI.

This chapter describes how to load and simulate FMUs using explanatory examples.

5.2. A first example

This example focuses on how to use IModelica.org's simulation functionality in the most basic way. The model
which isto be simulated isthe Van der Pol problem described in the code below. The model is also available from
the examplesin IModelica.org in the file VDP. mop (located ini nst al | / Pyt hon/ pyj mi / exanpl es/ fi | es).

nodel VDP
/] State start val ues
paranmeter Real x1_0 = O;
parameter Real x2_0 = 1;

/| The states
Real x1(start = x1_0);
Real x2(start = x2_0);

/1 The control signal

i nput Real u;
equati on
der(x1) = (1 - x272) * x1 - x2 + u;
der (x2) = x1;
end VDP;

Create anew file in your working directory called vDP. no and save the model.

Next, create a Python script file and write (or copy paste) the commands for compiling and loading a mode!:

I nport the function for conpilation of nmbdels and the | oad_fnu net hod
from pynodel i ca inport conpile_fnu
frompyfm inmport |oad_fmu

23

http://www.jmodelica.org/assimulo

Simulation of FMUs in Python

Inport the plotting library
import matplotlib.pyplot as plt

Next, we compile and load the model:

Conpi | e nodel
fmu_nanme = conpil e_f mu("VDP", " VDP. no")

Load nodel
vdp = | oad_f mu(f nu_nane)

The function conpi | e_f mu compiles the model into abinary, which is then loaded when the vdp object is created.
This object represents the compiled model, an FMU, and is used to invoke the simulation algorithm (for more
information about model compilation and options, see Chapter 4):

res = vdp.sinul ate(final _tine=10)

In this case we use the default simulation algorithm together with default options, except for the final time which
we set to 10. The result object can now be used to access the simulation result in a dictionary-like way:

x1
X2
t

res['x1']
res['x2']
res['tinme']

Thevariable trajectories are returned as NumPy arrays and can be used for further analysis of the simulation result
or for visualization:

plt.figure(l)

plt.plot(t, x1, t, x2)
plt.legend(('x1","'x2"))
plt.title('Van der Pol oscillator.")
plt.ylabel (" Angle (rad)')
plt.xlabel (' Time (s)')

plt.show()

In Figure 5.1 the simulation result is shown.

24

Simulation of FMUs in Python

Van der Pol oscillator.

Angle (rad)

|
w

Time (s)

Figure 5.1 Simulation result of the Van der Pol oscillator.

5.3. Simulation of Models

Simulation of modelsin IModelica.org is performed via the simulate method of a model object. The FMU model
objectsin IModelica.org are located in PyFMI:

* FMUMbdel ME1 / FMJUMbdel ME2
* FMUMbdel CS1 / FMUModel CS2

FMUMbdel ME* / FMUMbdel CS* also supports compiled models from other simulation/modelling tools that follow
the FMI standard (extension .fmu) (either Model exchange FMUs or Co-Simulation FMUs). Both FMI version 1.0
and FMI version 2.0 are supported. For more information about compiling amodel in IModelica.org see Chapter 4.

The simulation method is the preferred method for simulation of models and which by default is connected to the
Assimulo simulation package but can also be connected to other simulation platforms. The simulation method for
FMUVbdel ME* / FMUMbdel CS* is defined as:

25

Simulation of FMUs in Python

cl ass FMUvbdel (ME/ CS) (.. .)

def sinmul ate(self,
start _tine=0. 0,
final _tine=1.0,
i nput=(),
al gori t hm=' Assi nul oFM Al @',
options={}):

And used in the following way:

res = FMUVodel (ME/ CS) *. sinul ate() # Using default val ues

For FMUMbdel Cs*, the FMU contains the solver and is thus used (although using the same interface).

5.3.1. Convenience method, load _fmu

Since there are different FM| specifications for Model exchange and Co-Simulation and also differences between
versions, a convenience method, | oad_f nu has been created. This method isthe preferred access point for loading
an FMU and will return an instance of the appropriate underlying FMUMbdel (CS/ ME) * class.

nodel = | oad_f mu(" myFMJ. f mu")

5.3.2. Arguments

The start and final time attributes are simply the time where the solver should start the integration and stop the
integration. The input however is abit more complex and is described in more detail in the following section. The
algorithm attribute iswhere the different simul ation package can be specified, however currently only aconnection
to Assimulo is supported and connected through the algorithm Assi mul oFM Al g for FMUMbdel ME*.

5.3.2.1. Input

The input argument defines the input trajectories to the model and should be a 2-tuple consisting of the names of
theinput variables and their trajectories. The names can be either alist of strings, or asingle string for setting only
asingleinput trajectory. The trgjectories can be given as either adatamatrix or afunction. If adatamatrix is used,
it should contain atime vector as the first column, and then one column for each input, in the order of the list of
names. If instead the second argument is a function it should be defined to take the time as input and return an
array with the values of the inputs, in the order of the list of names.

For example, consider that we have a model with an input variable u1 and that the model should be driven by
a sine wave as input. We are interested in the interval 0 to 10. We will look at both using a data matrix and at
using afunction.

import nunpy as N
t = N linspace(0., 10., 100) # Create one hundred evenly spaced points
u = Nsin(t) # Create the input vector

26

Simulation of FMUs in Python

u_traj = N.transpose(N vstack((t,u))) # Create the data matri x and transpose
it to the correct form

The above code have created the data matrix that we are interested in giving to the model as input, we just need
to connect the data to a specific input variable, u1:

input_object = ('ul', u_traj)

Now we are ready to simulate using the input and simulate 10 seconds.

res = nodel . sinul ate(final _time=10, input=input_object)

If we on the other hand would have two input variables, ul and u2 the script would instead look like:

import nunmpy as N

t = N linspace(0.,10., 100) # Create one hundred evenly spaced points
ul = N.sin(t) # Create the first input vector

u2 = N. cos(t) # Create the second input vector

u_traj = N transpose(N. vstack((t,ul,u2))) # Create the data matri x and

transpose it to the correct form
input_object = (['ul',"u2'], u_traj)
res = nodel . sinmulate(final _tinme=10, input=input_object)
Note that the variables are now a List of variables.

If we wereto do the same exampl e using input functionsinstead, the code would look like for the single input case:
input_object = (‘ul', N sin)
and for the double input case:

def input_function(t):
return N.array([N sin(t), N cos(t)])

input_object = (['ul',"'u2'],input_function)
5.3.2.2. Options for Model Exchange FMUs

The options attribute are where options to the specified algorithm are stored, and are preferably used together with:

opts = FMUMbdel ME*. si mul at e_opti ons()

which returns the default options for the default a gorithm. Information about the available options can be viewed
by typing help on the opt s variable:

>>> hel p(opts)
Options for the solving the FMJ usi ng the Assinul o sinulati on package.
Currently, the only solver in the Assiml o package that fully supports
simul ation of FMJs is the solver CVode.

27

Simulation of FMUs in Python

In Table 5.1 the general optionsfor the AssimuloFMIAIg algorithm are described while in Table 5.2 a selection of
the different solver argumentsfor the ODE solver CVodeis shown. More information regarding the solver options
can be found here, http://www.jmodelica.org/assimulo.

Table 5.1 General options for AssimuloFMIAIg.

Option

Default

Description

solver

"CVode"

Specifies the simulation method that isto be used. Cur-
rently supported solvers are, CVode, Radau5ODE,
RungeK utta34, Dopri5, RodasODE, L SODAR, Ex-
plicitEuler. The recommended solver is"CVode".

ncp

Number of communication points. If ncp is zero, the
solver will return the internal steps taken.

initialize

True

If set to True, the initializing algorithm defined in the
FMU model isinvoked, otherwiseit is assumed the us-
er have manually invoked model .initialize()

write_scaled result

Fase

Set this parameter to True to write the result to file
without taking scaling into account. If the value of
scaled is False, then the variable scaling factors of the
model are used to reproduced the unscaled variable
values.

result_file_name

Empty string (default gen-
erated file name will be
used)

Specifies the name of the file where the simulation re-
sult iswritten. Setting this option to an empty string re-
sultsin a default file name that is based on the name of
the model class.

filter

None

A filter for choosing which variablesto actualy store
result for. The syntax can be found here. An exampleis
filter = "*der" , store al variables ending with 'der' and
filter = ["*der*", "summary*"], store all variables with
"der" in the name and al variables starting with "sum-

mary".

result_handling

llfilen

Specifies how the result should be handled. Either
stored to file or stored in memory. One can also use a
custom handler. Available options: "file", "memory",

"custom"

Letslook at an example, consider that you want to simulate a FMU model using the solver CVode together with
changing the discretization method (di scr) from BDF to Adams:

28

https://en.wikipedia.org/wiki/Glob_%28programming%29

Simulation of FMUs in Python

opts = nodel . sinmul ate_options() # Retrieve the default options

#opts[' solver'] = ' CVode' # Not necessary, default solver is CVode
opts[' CVode_options']['discr'] = 'Adans' # Change from usi ng BDF to Adans
opts['initialize'] = Fal se # Don't initialize the nodel

nodel . si mul at e(opt i ons=opt s) # Pass in the options to sinulate and sinul ate

It should also be noted from the above exampl e the options regarding aspecific solver, say thetolerancesfor Cvode,
should be stored in adouble dictionary where the first is named after the solver concatenated with _opt i ons:

opts[' CVode_options']['atol'] = 1.0e-6 # Options specific for CVode
For the general options, as changing the solver, they are accessed as asingle dictionary:

opts['solver'] = 'CVode' # Changing the solver
opts['ncp'] = 1000 # Changi ng the nunber of communication points.

Table 5.2 Selection of solver arguments for CVode

Option Default Description
discr 'BDF The discretization method. Can be ei-
ther 'BDF or '"Adams
iter 'Newton' The iteration method. Can be either
‘Newton' or 'FixedPoint'.
maxord 5 The maximum order used. Maximum

for 'BDF' is 5 while for the 'Adams'
method the maximum is 12

maxh Inf Maximum step-size. Positive float.
atol rtol*0.01* (nominal values of thelAbsolute Tolerance. Can be an ar-
continuous states) ray of floats where each value corre-

sponds to the absolute tolerance for
the corresponding variable. Can also
be asingle positive float.

rtol 1.0e-4 The relative tolerance. The relative
tolerance are retrieved from the 'de-
fault experiment' sectioninthe XML-
fileand if not found are set to 1.0e-4

5.3.2.3. Options for Co-Simulation FMUs
The options attribute are where options to the specified algorithm are stored, and are preferably used together with:
opts = FMJUMbdel CS*. si mul at e_opti ons()

which returns the default options for the default a gorithm. Information about the available options can be viewed
by typing help on the opt s variable:

29

Simulation of FMUs in Python

>>> hel p(opts)

Options for the solving the CS FMU.

In Table 5.3 the general options for the FMICSAIg algorithm are described.

Table 5.3 General options for FMICSAIg.

Option

Default

Description

ncp

500

Number of communication points.

initidize

True

If set to True, the initidizing a-
gorithm defined in the FMU mod-
el is invoked, otherwise it is as-
sumed the user have manualy in-
voked model.initialize()

write_scaled result

False

Set this parameter to Trueto writethe
result to file without taking scaling in-
to account. If the value of scaled is
False, then the variable scaling factors
of the model are used to reproduced
the unscaled variable values.

result file name

Empty string (default generated file
name will be used)

Specifies the name of the file where
the simulation result is written. Set-
ting this option to an empty string
results in a default file name that is
based on the name of the model class.

filter

None

A filter for choosing which vari-
ables to actudly store result
for. The syntax can be found
in http://en.wikipedia.org/wiki/Glob
%28programming%29 . An example
is filter = "*der" , store dl variables
ending with 'der’ and filter =["*der*",
"summary*"], store all variables with
"der" in the name and all variables
starting with "summary".

result_handling

"file"

Specifies how the result should be
handled. Either stored tofile or stored
in memory. One can also use a cus-
tomhandler. Availableoptions:. "file",

"memory", "custom"

30

???
???

Simulation of FMUs in Python

5.3.3. Return argument

The return argument from the simulate method is an object derived from a common result object Resul t Base in
al gorithmdrivers. py with afew extra convenience methods for retrieving the result of a variable. The result
object can be accessed in the same way as a dictionary type in Python with the name of the variable as key.

res = nodel . si mul at e()
y =res['y'] # Return the result for the variabl e/ parameter/constant y
dery = res['der(y)'] # Return the result for the variabl e/ paraneter/constant der(y)

This can be done for all the variables, parameters and constants defined in the model and is the preferred way of
retrieving the result. There are however some more options available in the result object, see Table 5.4.

Table 5.4 Result Object

Option Type Description

options Property Gets the options object that was used
during the simulation.

solver Property Gets the solver that was used during
the integration.

result_file Property Gets the name of the generated result
file.

is variable(name) Method Returns True if the given name is a
time-varying variable.

data_matrix Property Gets the raw data matrix.

is_negated(name) Method Returns True if the given name is
negated in the result matrix.

get_column(name) Method Returns the column number in the da-
ta matrix which corresponds to the
given variable.

5.4. Examples

In the next sections, it will be shown how to use the IModelica.org platform for simulation of various FMUs.

The Python commands in these examples may be copied and pasted directly into a Python shell, in some cases
with minor modifications. Alternatively, they may be copied into afile, which also is the recommended way.

5.4.1. Simulation of a high-index model

Mechanical component-based models often result in high-index DAEs. In order to efficiently integrate such
models, Modelica tools typically employs an index reduction scheme, where some equations are differen-
tiated, and dummy derivatives are selected. In order to demonstrate this feature, we consider the model

31

Simulation of FMUs in Python

Model i ca. Mechani cs. Rot at i onal . Exanpl es. First from the Modelica Standard library, see Figure 5.2. The
model is of high index since there are two rotating inertias connected with arigid gear.

inealzear
torgue inertial [N

% Py iy -0 ey spring s
PN =7 ot Te=7 o=l b)

° J=Jmator o J=2 J=doad

inertia2 inertia3

o

fregHz=fregHz

Yol

fived

Figure 5.2 Modelica.M echanics.Rotational .First connection diagram

First create a Python script file and enter the usual imports:
inmport matplotlib. pyplot as plt

from pynodel i ca i nport conpile_fnu
frompyfm inport |oad_fnu

Next, the model is compiled and loaded:

Conpi | e nodel
fmu_nane = conpil e_fmu("Mdelica. Mechani cs. Rot ati onal . Exanpl es. First")

Load nodel
nodel = | oad_f mu(f nmu_nane)

Notice that no file name, just an empty tuple, isprovided to the function conpi | e_f mu, sincein this case the model
that is compiled residesin the Modelica standard library. In the compilation process, the index reduction algorithm
isinvoked. Next, the model is simulated for 3 seconds:

Load result file
res = nodel .sinmulate(final _tine=3.)

Finally, the smulation results are retrieved and plotted:

wl = res['inertial.w]
W2 =res['inertia2. w]
w3 = res['inertia3.w]

tau = res['torque.tau']
t =res['time']

plt.figure(l)

plt.subplot(2,1,1)

plt.plot(t,wl,t,w2,t,w3)

plt.grid(True)

plt.legend(['inertial.w ,'inertia2.w,'inertia3.w])
plt.subplot (2,1, 2)

plt.plot(t,tau)

plt.grid(True)

32

Simulation of FMUs in Python

plt.legend(['tau'])
plt.xlabel ("time [s]"')
plt.show()

Y ou should now see a plot as shown below.

— inertial.w ||
— inertia2.w||
— inertia3.w/| |

85 0.5 1.0 1.5 2.0
time [s]

Figure 5.3 Simulation result for Modelica.M echanics.Rotational .Examples.First

5.4.2. Simulation and parameter sweeps

This example demonstrates how to run multiple simulations with different parameter values. Sweeping parameters
is a useful technique for analysing model sensitivity with respect to uncertainty in physical parameters or initial
conditions. Consider the following model of the Van der Pol oscillator:

nodel VDP
/] State start val ues
paranmeter Real x1_0 = O;
paranmeter Real x2_0 = 1;

/] The states
Real x1(start
Real x2(start

x1 0);
x2_0);

/1 The control signal

i nput Real u;

equati on
der(x1) = (1 - x272) * x1 - x2 + u;
der (x2) = x1;

end VDP;

33

Simulation of FMUs in Python

Notice that the initial values of the states are parametrized by the parameters x1_0 and x2_0. Next, copy the
Modelica code aboveinto afile vDP. mo and save it in your working directory. Also, create a Python script file and
nameit vdp_pp. py. Start by copying the commands:

import nunpy as N

import pylab as P

from pynodel i ca i nport conpile_fnu
frompyfm inport |oad_fnmu

into the Python file. Compile and load the model:

Define nodel file name and cl ass name
nodel _nane = ' VDP'
nofile = ' VDP. no'

Conpi |l e nodel
fmu_nane = conpil e_f mu(nodel _nane, nofil e)

Next, we define theinitial conditions for which the parameter sweep will be done. The state x2 starts at 0, whereas
theinitial condition for x1 is swept between -3 and 3:

Define initial conditions

N points = 11

x1 0 = N. linspace(-3.,3.,N_points)
x2_0 = N. zeros(N_points)

In order to visualize the results of the simulations, we open a plot window:

fig = P.figure()
P.clf()

P. hol d(Tr ue)
P. xl abel (' x1')
P. yl abel (" x2")

The actual parameter sweep is done by looping over the initial condition vectors and in each iteration set the
parameter values into the model, simulate and plot:

for i in range(N_points):
Load nodel
vdp = | oad_f mu(f mu_nane)
Set initial conditions in nodel
vdp. set (' x1_0',x1_0[i])
vdp. set (' x2_0',x2_0[i])
Sinmul ate
res = vdp. sinul ate(final _tinme=20)
Get simulation result
xl=res['x1']
x2=res[' x2']
Plot sinmulation result in phase plane pl ot
P.plot (x1, x2,'b")

P.grid()

P. show()

Simulation of FMUs in Python

Y ou should now see aplot similar to that in Figure 5.4.

-3

Figure 5.4 Simulation result-phase plane

5.4.3. Simulation of an Engine model with inputs

In this example the model is larger than the previous. It is a dightly modified version of the model
EngineV6_analytic from the Multibody library in the Modelica Standard Library. The modification consists of a
replaced load with a user defined load. This has been done in order to be able to demonstrate how inputs are set
from a Python script. In Figure 5.5 the model is shown.

engine

waorld

H

Figure 5.5 Overview of the Engine model

X

torgqueSensor load torque

= _éo—or/_? -
—%—f I\ tau

filter

35

Simulation of FMUs in Python

The Modelica code for the model is shown below, copy and save the code in afile named Engi neV6. no.

nodel Engi neV6_anal yti c_wit h_i nput
out put Real engi neSpeed_rpm= Mdelica. Slunits. Conversions.to_rpm(load.w);
out put Real engineTorque = filter.u;
out put Real filteredEngi neTorque = filter.y;

i nput Real u;
i mport Mbdel i ca. Mechani cs. *;

i nner Mul ti Body. Wrld worl d;
Mul ti Body. Exanpl es. Loops. Utilities. Engi neV6_anal yti c engi ne(redecl are
nmodel Cylinder = MiltiBody. Exanpl es. Loops. Utilities.Cylinder_anal ytic_CAD);

Rot at i onal . Conponents. | nertia | oad(
phi (start=0, fi xed=true), w(start=10,fi xed=true),
st at eSel ect =St at eSel ect . al ways, J=1);

Rot at i onal . Sensors. Tor queSensor torqueSensor ;

Rot at i onal . Sour ces. Tor que t or que;

Model i ca. Bl ocks. Conti nuous. Critical Danping filter(
n=2,ini t Type=Mbdel i ca. Bl ocks. Types. I nit. St eadySt at e, f =5) ;

equati on
torque.tau = u;

connect (worl d. frame_b, engine.frane_a);

connect (torque. fl ange, | oad.fl ange_b);

connect (torqueSensor. fl ange_a, engine.fl ange_b);
connect (torqueSensor. fl ange_b, |oad.flange_a);
connect (torqueSensor.tau, filter.u);

annot ati on (experiment (StopTi ne=1.01));

end Engi neV6_anal ytic_w th_input;

Now that the model has been defined, we create our Python script which will compile, simulate and visualize the
result for us. Create a new text-file and start by copying the below commands into the file. The code will import
the necessary methods and packages into Python.

from pynodelica i nport conpile_fnu
frompyfm inport |oad_fnu
import pylab as P

Compiling the model is performed by invoking the conpi | e_f ru method where the first argument is the name of
the model and the second argument is where the model is located (which file). The method will create an FMU in
the current directory and in order to simulate the FMU, we need to additionally load the created FM U into Python.
Thisisdone with thel oad_f mu method which takes the name of the FMU as input.

name = conpil e_fru("Engi neV6_anal ytic_with_input", "Engi neV6.nn")

36

Simulation of FMUs in Python

nmodel = | oad_f nmu(nane)

So, now that we have compiled the model and loaded it into Python we are almost ready to simulate the model.
First however, we retrieve the simulation options and specify how many result points we want to receive after a
simulation.

opts = nodel . sinul ate_options()
opts["ncp"] = 1000 #Specify that 1000 out put points shoul d be returned

A simulation isfinally performed using the si mul at e method on the model and as we have changed the options,
we need to additionally provide these options to the simulate method.

res = nodel . si mul at e(opti ons=opt s)

The simulation result is returned and stored into the r es object. Result for atrajectory is easily retrieved using a
Python dictionary syntax. Below is the visualization code for viewing the engine torque. One could instead use the
Plot GUI for the visualization as the result are stored in afilein the current directory.

P.plot(res["tine"],res["filteredEngi neTorque"], |abel="Filtered Engi ne Torque")
P. show()

InFigure5.6 thetrajectoriesare shown for he enginetorque and the engine speed utilizing subplotsfrom Matplatlib.

EngineV6

265

260

— Filtered Engine Torque | |

€ 255
Z
© 250

g
Q 245F

20l S — S— S—]

I I I I I
23%0 0.2 0.4 0.6 0.8 1.0 1.2
3000 T T
_2500F SOOI SO S — Engine Speed |

c : : : : :
£ 2000 R S e T S

= : : : : :
o 1500 R T e SRS

1000} N . S S S
(V)]

e e S — T— —

Figure 5.6 Resulting trajectories for the engine model.

37

Simulation of FMUs in Python

Above we have simulated the engine model and looked at the result, we have not however specified any load as
input. Remember that the model we are looking at has a user specified load. Now we will create a Python function
that will act as our input. We create a function that depends on the time and returns the value for use asinput.

def input_func(t):
return -100. 0*t

In order to use thisinput in the simulation, smply provide the name of the input variable and the function as the
input argument to the simulate method, see below.

res = nodel . si mul at e(opti ons=opts, input=("u",input_func))
Simulate the model again and look at the result and the impact of the input.

Large models contain an enormous amount of variables and by default, all of these variables are stored in the resullt.
Storing the result takes time and for large models the saving of the result may be responsible for the majority of
the overall simulation time. Not all variables may be of interest, for example in our case, we are only interested
in two variables so storing the other variables are not necessary. In the options dictionary there is afilter option
which allows to specify which variables should be stored, so in our case, try the below filter and look at the impact
on the simulation time.

opts["filter"] = ["filteredEngi neTorque", "engi neSpeed_rpni]
5.4.4. Simulation using the native FMI interface

This example shows how to usethe native IModelica.org FMI interface for ssmulation of an FM U of version 1.0 for
Model Exchange. For the procedure with version 2.0, refer to Functional Mock-up Interface for Model Exchange
and Co-Simulation version 2.0.

The FMU that is to be smulated is the bouncing ball example from Qtronics FMU SDK (http://www.gtronic.de/
en/fmusdk.html). This example is written similar to the example in the documentation of the 'Functional Mock-
up Interface for Model Exchange' version 1.0 (https:.//www.fmi-standard.org/). The bouncing ball model is to be
simulated using the explicit Euler method with event detection.

The example can a so be found in the Python examples catalog in the IModelica.org platform.

The bouncing ball consists of two equations,

h=uv
U=—g

and one event function (also commonly called root function),

h>0

38

Simulation of FMUs in Python

Where the ball bounces and lose some of its energy according to,
Vg = —€Vy

Here, h is the height, g the gravity, v the velocity and e a dimensionless parameter. The starting values are, h=1
and v=0 and for the parameters, e=0.7 and g = 9.81.

5.4.4.1. Implementation

Start by importing the necessary modules,
import nunpy as N

import pylab as P # Used for plotting
frompyfm.fm inport |load frmu # Used for |oading the FMJ

Next, the FMU isto be loaded and initialized

Load the FMJ by specifying the frmu together with the path.
bounci ng_frmu = | oad_f mu(' / pat h/ t o/ FMJ bounci ngBal | . f nu')

Tstart = 0.5 The start tinme.
Tend = 3.0 The final simulation tine.
bouncing fru.tine = Tstart Set the start tine before the initialization.

(Defaults to 0.0)
Initialize the nodel. Also sets all the start
attributes defined in the XM file.

bouncing _fru.initialize()

HHHHHH

Thefirst line loads the FMU and connects the C-functions of the model to Python together with loading the infor-
mation from the XML-file. The start time also needs to be specified by setting the property ti me. The model is
also initialized, which must be done before the simulation is started.

Note that if the start time is not specified, FMUMbdel MEL tries to find the starting time in the XML-file structure
'default experiment' and if successful starts the simulation from that time. Also if the XML-file does not contain
any information about the default experiment the simulation is started from time zero.

Then information about the first step isretrieved and stored for later use.

Get Continuous States

X = bounci ng_f nu. conti nuous_st ates

Get the Nominal Val ues

x_nom nal = bounci ng_f mu. nom nal _conti nuous_st at es
CGet the Event Indicators

event i nd = bounci ng_f mu. get _event _i ndi cat ors()

Values for the solution
vref = [bounci ng_fnu. get_variabl e_val ueref('h')] + \
[bounci ng_fmu. get _vari abl e_val ueref ('v')] # Retrieve the val ureferences for

t he

39

Simulation of FMUs in Python

values 'h' and 'V’
t_sol = [Tstart]
sol = [bouncing_fnu.get_real (vref)]

Here the continuous states together with the nominal values and the event indicators are stored to be used in the
integration loop. In our case the nominal values are al equal to one. This information is available in the XML-
file. We aso create lists which are used for storing the result. The final step before the integration is started isto
define the step-size.

time = Tstart
Tnext = Tend # Used for tinme events
dt = 0.01 # Step-size

We are now ready to create our main integration loop where the solution is advanced using the explicit Euler
method.

Main integration | oop.

while time < Tend and not bouncing_fmu. get_event _info().term nateSi nmul ati on:
#Conput e the derivative of the previous step f(x(n), t(n))
dx = bounci ng_fnmu. get _derivatives()

Advance
h = mn(dt, Tnext-time)
time =tine + h

Set the tine
bouncing fru.tine = tinme

Set the inputs at the current time (if any)
bounci ng_fnu. set _real, set _integer, set_bool ean, set_string (val ueref, val ues)

Set the states at t = tine (Performthe step using x(n+1)=x(n)+hf(x(n), t(n))
X = x + h*dx
bounci ng_f mu. conti nuous_states = x

Thisis the integration loop for advancing the solution one step. The loop continues until the final time have been
reached or if the FMU reported that the simulation isto be terminated. At the start of the loop the derivatives of the
continuous states are retrieved and then the simulation time is incremented by the step-size and set to the model.
It could also be the case that the model depends on inputs which can be set using theset _(real /. ..) methods.

Note that only variables defined in the XML-file to be inputs can be set using the set _(real /...) methods
according to the FMI specification.

The step is performed by calculating the new states (x+h* dx) and setting the values into the model. As our model,
the bouncing ball also consist of event functions which needs to be monitored during the simulation, we have to
check the indicators which is done below.

Get the event indicators at t = tinme

40

Simulation of FMUs in Python

event _i nd_new = bounci ng_f mu. get _event _i ndi cat ors()

Informthe nodel about an accepted step and check for step events
st ep_event = bounci ng_f mu. conpl et ed_i nt egrat or _st ep()

Check for tine and state events
time_event = abs(time-Tnext) <= 1.e-10
state_event = True if True in ((event_ind_new>0.0) != (event_ind>0.0)) else Fal se

Events can be, time, state or step events. The time events are checked by continuously monitoring the current time
and the next time event (Tnext). State events are checked against sign changes of the event functions. Step events
are monitored in the FMU, in the method conpl et ed_i nt egr at or _st ep() and return Tr ue if any event handling
isnecessary. If an event have occurred, it needs to be handled, see below.

Event handling
if step_event or tine_event or state_event:

el nfo = bounci ng_f mu. get _event _i nf o()
el nfo.iterationConverged = Fal se

Event iteration

whil e elnfo.iterati onConverged == Fal se
bounci ng_f mu. event _update('0') # Stops at each event iteration
el nfo = bounci ng_fnu. get _event _i nfo()

Retrieve solutions (if needed)

if elnfo.iterati onConverged == Fal se
bounci ng_f mu. get _real, get _i nt eger, get _bool ean, get _stri ng(val ueref)
pass

Check if the event affected the state values and if so sets them
if elnfo. stateVal uesChanged
X = bounci ng_f nu. conti nuous_st at es

Get new nomi nal val ues
i f elnfo. stateVal ueRef er encesChanged
atol = 0.01*rtol *bounci ng_f mu. nom nal _conti nuous_st at es

Check for new time event
i f elnfo.upconi ngTi meEvent :

Tnext = m n(el nfo.next Event Ti me, Tend)
el se:

Tnext = Tend

If an event occurred, we enter the iteration loop where we loop until the solution of the new states have converged.
During thisiteration we can also retrieve the intermediate values with the normal get methods. At thispoint el nf o
containsinformation about the changes made in the iteration. If the state values have changed, they areretrieved. If
the state references have changed, meaning that the state variables no longer have the same meaning as before by
pointing to another set of continuous variablesin the model, for examplein the case with dynamic state selection,
new absolute tolerances are calculated with the new nominal values. Finally the model is checked for a new time

41

Simulation of FMUs in Python

event _ind = event _i nd_new

Retrieve solutions at t=tinme for outputs
bounci ng_f mu. get _real, get _i nt eger, get _bool ean, get _string (val ueref)

t_sol += [tine]
sol += [bounci ng_fnu. get_real (vref)]

In the end of the loop, the solution is stored and the old event indicators are stored for use in the next loop.

After the loop have finished, by reaching the final time, we plot the simulation results

Pl ot the height

.figure(l)

plot(t_sol,N array(sol)[:,0])
title(bouncing_fmu.get_nane())
yl abel (' Height (m")

x|l abel (" Time (s)')

Plot the velocity

.figure(2)
plot(t_sol,Narray(sol)[:,1])
.title(bouncing fnu.get_nane())
.yl abel (" Velocity (m's)"')

.xl abel (' Time (s)')

. show()

UVUUUUUUH*TUTUUTUDOH

and the figure below shows the results.

bouncingBall
1.0 ; :
E
=
(=)
@
T
-03
@
E
2
‘O
k<]
g
35 1.0 1.5 2.0 2.5 3.0
Time (s)

Figure 5.7 Simulation result

42

Simulation of FMUs in Python

5.4.5. Simulation of Co-Simulation FMUs

Simulation of a Co-Simulation FMU follows the same workflow as ssmulation of a Model Exchange FMU. The
model we would like to simulate is a model of a bouncing ball, the file bounci ngBal I . f mu is located in the
examplesfolder in the IModelica.org installation, pyf ni / exanpl es/ fil es/ CS1. 0/ . The FMU isaCo-simulation
FMU and in order to simulate it, we start by importing the necessary methods and packages into Python:

import pylab as P # For plotting
frompyfm inport load fmu # For |oading the FMJU

Here, we have imported packages for plotting and the method | oad_f nu which takes as input an FMU and then
determines the type and returns the appropriate class. Now, we need to load the FMU.

nodel = | oad_f mu(' bounci ngBal | . fmu')

Thenodel object can now be used to interact with the FMU, setting and getting values for instance. A simulation
is performed by invoking the si nul at e method:

res = nodel .simulate(final _tine=2.)

As a Co-Simulation FMU contains its own integrator, the method simulate calls this integrator. Finally, plotting
theresult is done as before:

Retrieve the result for the variables
h_res res['h']

v_res res['v']

res['tine']

Pl ot the solution

Pl ot the height

g = P.figure()

.clf()

.subpl ot (2,1, 1)

.plot(t, h_res)

.yl abel (' Height (m")

. xl abel (" Tine (s)")

Plot the velocity

. subpl ot (2,1, 2)

plot(t, v_res)

.yl abel (' Velocity (m's)")

.xl abel (' Time (s)')
.suptitle(' FM Bouncing Ball")
. show()

UV UUUUUHTUVUUUTUUTHHF

and the figure below shows the results.

43

Simulation of FMUs in Python

FMI Bouncing Ball

E
=
(=)l
@
T
~03% 0.5 1.0 15 2.0
Time (s)
a i
£ i
> i
2)
o
2]
1.0 15 2.0
Time (s)

Figure 5.8 Simulation result

Chapter 6. Dynamic Optimization in
Python

6.1. Introduction

JModelica.org supports optimization of dynamic and steady state models. Many engineering problems can be
cast as optimization problems, including optimal control, minimum time problems, optimal design, and model
calibration. These different types of problemswill beillustrated and it will be shown how they can be formulated
and solved. The chapter startswith an introductory examplein Section 6.2 and in Section 6.3, the details of how the
optimization algorithms are invoked are explained. The following sections contain tutorial exercisesthat illustrates
how to set up and solve different kinds of optimization problems.

When formulating optimization problems, models are expressed in the Modelica language, whereas optimization
specifications are given in the Optimica extension which is described in Chapter 8. The tutorial exercisesin this
chapter assumes that the reader is familiar with the basics of Modelica and Optimica.

6.2. A first example

In this section, asimple optimal control problem will be solved. Consider the optimal control problem for the Van
der Pol oscillator model:

optim zation VDP_Opt (objectivelntegrand = x172 + x272 + u”2,
startTi ne 0,
final Ti me 20)

[/ The states
Real x1(start=0,fixed=true);
Real x2(start=1,fixed=true);

/1 The control signal
i nput Real u;

equati on
der (x1)
der (x2)
constrai nt
u<=0. 75;
end VDP_Opt;

(1 - x2722) * x1 - x2 + u;
x1;

Createanew filenamed vDP_opt . mop and saveit in you working directory. Noticethat thismodel containsboth the
dynamic system to be optimized and the optimization specification. Thisis possible since Optimicais an extension
of Modelica and thereby supports also Modelica constructs such as variable declarations and equations. In most
cases, however, Modelica models are stored separately from the Optimica specifications.

45

Dynamic Optimization in Python

Next, create a Python script file and awrite (or copy paste) the following commands:

I nmport the function for transfering a nodel to CasADi | nterface
frompyjm inport transfer_optim zation_problem

Inport the plotting library
import matplotlib. pyplot as plt

Next, we transfer the mode!:

Transfer the optim zati on problemto casadi
op = transfer_optim zati on_probl en{"VDP_Opt", "VDP_Opt.nop")

The function t r ansf er _opt i ni zat i on_pr obl emtransfers the optimization problem into Python and expresses
it's variables, equations, etc., using the automatic differentiation tool CasADi. This object represents the compiled
model and is used to invoke the optimization algorithm:

res = op.optimze()

In this case, we use the default settings for the optimization algorithm. The result object can now be used to access
the optimization result:

Extract variable profiles
x1l=res['x1']

x2=res["' x2']

u=res['u']

t=res['tine']

The variable trgjectories are returned as NumPy arrays and can be used for further analysis of the optimization
result or for visualization:

plt.figure(l)
plt.clf()

pl t. subpl ot (311)
plt.plot(t,x1)
plt.grid()
plt.ylabel ('x1")

pl t. subpl ot (312)
plt.plot(t,x2)
plt.grid()
plt.yl abel (' x2")

pl t. subpl ot (313)
plt.plot(t,u)
plt.grid()
plt.ylabel ("u")
plt.xlabel ("tine')
plt.show()

Y ou should now see the optimization result as shown in Figure 6.1.

46

Dynamic Optimization in Python

10 15 20
10 15 20
10 15 20

time

Optimal control and state profiles for the Van Der Pol optimal control problem.
Figure 6.1 Optimal profilesfor the VDP oscillator

6.3. Solving optimization problems

The first step when solving an optimization problem isto formulate amodel and an optimization specification and
then compile the model as described in the following sectionsin this chapter. There are currently two different op-
timization algorithms availablein IModelica.org, which are suitable for different classes of optimization problems.

» Dynamic optimization of DAEsusing direct collocation with CasADi. Thisagorithmisthedefault algorithm
for solving optimal control and parameter estimation problems. It is implemented in Python, uses CasADi for
computing function derivatives and the nonlinear programming solvers IPOPT or WORHP for solving the re-
sulting NLP. Use this method if your model is a DAE and does not contain discontinuities.

» Derivative free calibration and optimization of ODEs with FMUs. This algorithm solves parameter opti-
mization and model calibration problems and is based on FMUs. The algorithm is implemented in Python and
relies on a Nelder-Mead derivative free optimization algorithm. Use this method if your model is of large scale
and has amodest number of parametersto calibrate and/or contains discontinuities or hybrid elements. Note that
thisalgorithmisapplicableto model swhich have been exported as FM Us al so by other toolsthan IModelica.org.

Toillustrate how to solve optimization problemsthe VVan der Pol problem presented aboveis used. First, the model
istransferred into Python

op = transfer_optim zation_probl en("VDP_pack. VDP_Opt 2", "VDP_Opt.nop")

47

Dynamic Optimization in Python

All operations that can be performed on the model are available as methods of the op object and
can be accessed by tab completion. Invoking an optimization agorithm is done by calling the method
Opt i ni zat i onPr obl em opt i ni ze, which performs the following tasks:

* Sets up the selected algorithm with default or user defined options
* Invokes the algorithm to find a numerical solution to the problem
» Writes the result to afile

* Returns aresult object from which the solution can be retrieved

The interactive help for the opt i i ze method is displayed by the command:

>>> hel p(op. opti m ze)
Sol ve an optim zati on probl em

Par aneters: :

al gorithm --
The al gorithmwhich will be used for the optimzation is
speci fied by passing the al gorithm class name as string or
class object in this argunment. 'algorithm can be any
cl ass which inplements the abstract class Al gorithnBase
(found in algorithmdrivers.py). In this way it is
possible to wite customalgorithns and to use themwth this
functi on.

The followi ng al gorithns are avail abl e:

- 'Local DAECol | ocationAl g'. This algorithmis based on
direct collocation on finite el enents and the al gorithm | POPT
is used to obtain a numerical solution to the problem

Defaul t: 'Local DAECol | ocati onAl g'

options --
The options that shoul d be used in the al gorithm The options
docunent ation can be retrieved froman options object:

>>> myMbdel = Optim zati onProblen(...)
>>> opts = nyModel . optim ze_options()
>>> opts?

Val id val ues are:

- Adict that overrides sone or all of the algorithmls default val ues.
An enpty dict will thus give all options with default val ues.

- An Options object for the corresponding al gorithm e.g.
Local DAECol | ocat i onAl gOpti ons for Local DAECol | ocati onAl g.

Default: Enpty dict

Returns::

48

Dynamic Optimization in Python

A result object, subclass of algorithmdrivers. Resul t Base.

The optimize method can be invoked without any arguments, in which case the default optimization algorithm,
with default options, isinvoked:

res = vdp. optimze()

In the remainder of this chapter the available algorithms are described in detail. Options for an algorithm can be
set using the opt i ons argument to the opt i mi ze method. It is convenient to first obtain an options object in order
to access the documentation and default option values. Thisis done by invoking the method opt i ni ze_opt i ons:

>>> hel p(op. opti m ze_opti ons)

Returns an instance of the optim ze options class containing options

default values. If called w thout argunent then the options class for

the default optimzation algorithmw |l be returned.

Paraneters: :

al gorithm --

The al gorithm for which the options class should be returned.
Possi bl e val ues are: 'Local DAECol | ocati onAl g'.
Def aul t: ' Local DAECol | ocati onAl g'

Ret urns: :

Options class for the algorithmspecified with default val ues.

The option object is essentially a Python dictionary and options are set simply by using standard dictionary syntax:

opts = vdp.optim ze_options()
opts['n_e'] =5

The optimization agorithm may then be invoked again with the new options:
res = vdp. optinmi ze(opti ons=opts)
Available options for each algorithm are documented in their respective sectionsin this Chapter.

The opt i m ze method returns aresult object containing the optimization result and some meta information about
the solution. The most common operation isto retrieve variable trajectories from the result object:

time = res['tinme']
x1 = res['x1']

Variable datais returned as NumPy arrays. The result object also contains references to the model that was opti-
mized, the name of the result file that was written to disk, a solver object representing the optimization algorithm
and an options object that was used when solving the optimization problem.

49

Dynamic Optimization in Python

6.4. Scaling

Many physical models contain variables with values that differ by several orders of magnitude. A typical example
isthermodynamic models containing pressures, temperatures and mass flows. Such large differencesin scales may
have a severe deteriorating effect on the performance of numerical algorithms, and may in some cases even lead to
thealgorithm failing. In order to relieve the user from the burden of manually scaling variables, Modelicaoffersthe
noni nal attribute, which can be used to automatically scale amodel. Consider the Modelica variable declaration:

Real pressure(start=101.3e3, nom nal =1e5);

Here, the noni nal attribute is used to specify that the variable pressure takes on values which are on the order of
16e5. In order to use noni nal attributes for scaling with CasADi-based algorithms, scaling is enabled by setting the
algorithm option vari abl e_scal i ng to True, and is enabled by default . When scaling is enabled, all variables
with a set nominal attribute are then scaled by dividing the variable value with its nominal value, i.e., from an
algorithm point of view, al variables should take on values close to one. Notice that variablestypically vary during
a simulation or optimization and that it is therefore not possible to obtain perfect scaling. In order to ensure that
model equations are fulfilled, each occurrence of avariable is multiplied with its nominal value in equations. For
example, the equation:

T =1(p)

is replaced by the equation

T_scal ed*T_nom = f(p_scal ed*p_non)
whenvari abl e scal i ng isenabled.

The agorithm in Section 6.5 aso has support for providing trajectories (obtained by for example simulation) that
are used for scaling. This means that it usually is not necessary to provide nominal values for all variables, and
that it is possible to use time-varying scaling factors.

For debugging purposes, it is sometimes useful to write a simulation/optimization/initialization result to file
in scaled format, in order to detect if there are some variables which require additional scaling. The option
write_scal ed_resul t hasbeen introduced as an option to theinitial i ze, si mul at e and opt i m ze methods
for this purpose.

6.5. Dynamic optimization of DAEs using direct collo-
cation with CasADi

6.5.1. Algorithm overview

The direct collocation method described in this section can be used to solve dynamic optimization problems, in-
cluding optimal control problems and parameter optimization problems. In the collocation method, the dynamic
model variable profiles are approximated by piecewise polynomials. This method of approximating a differential
equation correspondsto afixed step implicit Runge-Kutta scheme, where the mesh defines the length of each step.

50

Dynamic Optimization in Python

Also, the number of collocation points in each element, or step, needs to be provided. This number corresponds
to the stage order of the Runge-Kutta scheme. The selection of mesh is analogous to the choice of step length in
aone-step algorithm for solving differential equations. Accordingly, the mesh needs to be fine-grained enough to
ensure sufficiently accurate approximation of the differential constraint. The nonlinear programming (NLP) solvers
IPOPT and WORHP can be used to solve the nonlinear program resulting from collocation. The needed first- and
second-order derivatives are obtained using CasADi by algorithmic differentiation. For more details on the inner
workings of the algorithm, see [Mag2015] and Chapter 3 in [Mag2016].

The NLP solvers require that the model equations are twice continuously differentiable with respect to all of the
variables. This for example means that the model can not contain integer variables or i f clauses depending on
the states.

Optimization models are represented using the class Opt i ni zat i onPr obl em which can be instantiated using the
transfer_optini zati on_probl emmethod. An object containing all the options for the optimization algorithm
can be retrieved from the object:

frompyjm inmport transfer_optim zation_probl em

op = transfer_optim zation_probl en(cl ass_nanme, optimca_file_path)
opts = op.optimnmze_options()

opts? # View the hel p text

After options have been set, the options object can be propagated to the opt i ni ze method, which solves the op-
timization problem:

res = op.optim ze(options=opts)

The standard optionsfor the algorithm are shown in Table 6.1. Additional documentation isavailablein the Python
class documentation. The algorithm also has alot of experimenta options, which are not as well tested and some
are intended for debugging purposes. These are shown in Table 6.2, and caution is advised when changing their
default values.

Table 6.1 Standard options for the CasADi- and collocation-based optimization algorithm

Option Default Description
n_e 50 Number of finite e ements.
hs None Element lengths. Possible values: None, iterable

of floats and "free" None: The element lengths are
uniformly distributed. iterable of floats: Compo-
nent i of the iterable specifies the length of element
i. The lengths must be normalized in the sense that
the sum of all lengths must be equal to 1. "free":
The element |engths become optimization variables
and are optimized according to the algorithm option
free_element_lengths data. WARNING: The "free"
option isvery experimental and will not always give
desirable results.

51

Dynamic Optimization in Python

Option Default Description
n_cp 3 Number of collocation pointsin each element.
expand_t o_sx "NLP" Whether to expand the CasADi M X graphsto SX

graphs. Possible values: "NLP*, "DAE", "no". "NLP":
The entire NLP graph is expanded into SX. This will
lead to high evaluation speed and high memory con-
sumption. "DAE": The DAE, objective and constraint
graphs for the dynamic optimization problem expres-
sions are expanded into SX, but the full NLP graphis
an MX graph. Thiswill lead to moderate evaluation
speed and moderate memory consumption. "no": All
constructed graphs are MX graphs. Thiswill lead to
low evaluation speed and low memory consumption.

init_traj None Variable trgjectory data used for initialization of the
NLP variables.

nomi nal _tr aj None Variable trajectory data used for scaling of the NLP
variables. This option isonly applicableif variable
scaling is enabled.

bl ocki ng_factors None (not used) Blocking factors are used to enforce piecewise

constant inputs. The inputs may only change val-

ues at some of the element boundaries. The option

is either None (disabled), given as an instance of
pyjmi.optimization.casadi_collocation.BlockingFactors
or asalist of blocking factors. If the optionsisalist

of blocking factors, then each element in the list spec-
ifies the number of collocation elements for which

all of the inputs must be constant. For example, if
blocking_factors ==[2, 2, 1], then the inputs will at-
tain 3 different values (number of elementsin thelist),
and it will change values between collocation element
number 2 and 3 as well as number 4 and 5. The sum of
all elementsin the list must be the same as the number
of collocation elements and the length of the list de-
termines the number of separate values that the inputs
may attain. See the documentation of the BlockingFac-
tors class for how to useit. If blocking_factorsis None,
then the usual collocation polynomials are instead used
to represent the controls.

external _data None Data used to penalize, constrain or eliminate certain
variables.

52

Dynamic Optimization in Python

Option

Default

Description

del ayed_f eedback

None

If not None, should be adi ct with mappings

"del ayed_var': ('undel ayed var', delay_ne).
For each key-value pair, adds the the constraint

that the variable' del ayed_var' equalsthe val-

ue of the variable' undel ayed_var' delayed by

del ay_ne elements. Theinitia part of the trajectory
for' del ayed_var' isfixed toitsinitial guessgiven by
theinit_traj optionortheinitial Guess attribute.

" del ayed_var' will typically be an input. Thisisan
experimental feature and is subject to change.

sol ver

'|POPT"

Specifies the nonlinear programming solver to be used.
Possible choices are '1POPT' and 'WORHP'.

verbosity

Sets verbosity of algorithm output. O prints nothing, 3
prints everything.

| POPT_opti ons

IPOPT defaults

IPOPT options for solution of NLP. See IPOPT's docu-
mentation for available options.

WORHP_opt i ons

WORHP defaults

WORHP options for solution of NLP. See WORHP's
documentation for available options.

Table 6.2 Experimental and

debugging options for the CasADi- and collocation-based optimization algorithm

Option

Default

Description

free_el ement _| engt hs_dahone

Data used for optimizing the element lengthsif they
are free. Should be None when hs 1= "free".

di scr

'LGR'

Determines the collocation scheme used to discretize
the problem. Possible values: "LG" and "LGR". "LG":
Gauss collocation (L egendre-Gauss) "LGR": Radau
collocation (L egendre-Gauss-Radau).

named_vars

False

If enabled, the solver will create a duplicated set of

NL P variables which have names corresponding to the
M odelica/Optimica variable names. Symbolic expres-
sions of the NLP consisting of the named variables
can then be obtained using the get_named_var_expr
method of the collocator class. Thisoptionisonly in-
tended for investigative purposes.

init_dual

None

Dictionary containing vectors of initial guessfor NLP
dual variables. Intended to be obtained as the solu-
tion of an optimization problem which has an identical
structure, which is stored in the dual _opt attribute of

53

Dynamic Optimization in Python

Option

Default

Description

the result object. The dictionary has two keys, 'g' and
'X', containing vectors of the corresponding dual vari-
ableintial guesses. Note that when using |POPT, the
option warm_start_init_point has to be activated for
this option to have an effect.

vari abl e_scal i ng True Whether to scale the variables according to their
nominal values or the trajectories provided with the
nominal_traj option.

equation_scal i ng False Whether to scale the equationsin collocated NLP.

Many NLP solvers default to scaling the equations, but
if it is done through this option the resulting scaling
can be inspected.

nom nal _traj _node

')

{"_default_mode": "lin-

Mode for computing scaling factors based on nominal
trajectories. Four possible modes: "attribute”: Time-
invariant, linear scaling based on Nominal attribute
"linear": Time-invariant, linear scaling "affine": Time-
invariant, affine scaling "time-variant": Time-vari-

ant, linear scaling Option is a dictionary with variable
names as keys and corresponding scaling modes as val-
ues. For all variables not occuring in the keys of the
dictionary, the mode specified by the"_default_mode"
entry will be used, which by default is"linear".

result_file_nane

Specifies the name of the file where the result is writ-
ten. Setting this option to an empty string resultsin a
default file name that is based on the name of the mod-
el class.

wite_scal ed result

False

Return the scaled optimization result if set to True, oth-
erwise return the unscaled optimization result. This
option isonly applicable when variable scaling is en-
abled and is only intended for debugging.

print_condition_nunber

sFalse

Prints the condition numbers of the Jacobian of the
constraints and of the simplified KKT matrix at the ini-
tial and optimal points. Note that thisis only feasible
for very small problems.

resul t _node

‘collocation_points

Specifies the output format of the optimization
result. Possible values: "collocation_points’,
"element_interpolation” and "mesh_points’
"collocation_points': The optimization result is giv-

Dynamic Optimization in Python

Option

Default

Description

en at the collocation points as well as the start and fi-
nal time point. "element_interpolation”: The values

of the variable trajectories are calculated by evaluat-
ing the collocation polynomials. The algorithm option
n_eva_pointsis used to specify the evaluation points
within each finite element. "mesh_points": The opti-
mization result is given at the mesh points.

n_eval _points

20

The number of evaluation points used in each ele-
ment when the algorithm option result_modeis set

to "element_interpolation”. One evaluation point is
placed at each element end-point (hence the option val-
ue must be at least 2) and the rest are distributed uni-
formly.

checkpoi nt

False

If checkpoi nt issetto True, transcribed NLPis built
with packed M X functions. Instead of calling the DAE
residua function, the collocation equation function,
and the lagrange term functionn_e * n_cp times, the
check point scheme builds an MxFunct i on evaluating
n_cp collocation points at the same time, so that the
packed MXFunct i on iscalled only n_e times. This ap-
proach improves the code generation and it is expected
to reduce the memory usage for constructing and solv-
ing the NLP.

quadr at ur e_constrai nt

True

Whether to use quadrature continuity constraints. This
option is only applicable when using Gauss colloca-
tion. It isincompatible with eliminate_der_var set to
True. True: Quadrature is used to get the values of the
states at the mesh points. False: The Lagrange basis
polynomials for the state collocation polynomials are
evaluated to get the values of the states at the mesh
points.

mut abl e_ext ernal _dat a

True

If true and the ext er nal _dat a option is used, the ex-
ternal data can be changed after discretization, e.g. dur-
ing warm starting.

explicit_hessian

False

Explicitly construct the Lagrangian Hessian, rather
than rely on CasADi to automatically generate it.
Thisisonly doneto circumvent abug in CasADi, see
#4313, which rarely causes the automatic Hessian to be
incorrect.

55

Dynamic Optimization in Python

Option Default Description

or der "default” Order of variables and equations. Requires
write_scaled result! Possible values: "default”, "re-
verse", and "random”

The last standard options, 1 POPT_opt i ons and WORHP_opt i ons, Serve as interfaces for setting options in |POPT
and WORHP. To exemplify the usage of these algorithm options, the maximum number of iterations in IPOPT
can be set using the following syntax:

opts = nodel . optim ze_options()
opts[" I POPT_options"]["max_iter"] = 10000

JModelica.org's CasADi-based framework does not support simulation and initialization of models. It is recom-
mended to use PyFMI for these purposes instead.

Some statistics from the NLP solver can be obtained by issuing the command

res_opt.get_sol ver_statistics()

The return argument of this function can be found by using the interactive help:

hel p(res_opt.get_sol ver _statistics)
Get nonlinear progranm ng sol ver statistics.

Returns::

return_status --
Return status from nonlinear progranm ng sol ver.

nbr _iter --
Nunber of iterations.

obj ective --
Fi nal val ue of objective function.

total _exec_tinme --
Execution tine.

6.5.1.1. Reusing the same discretization for several optimization solutions

When collocation is used to solve adynamic optimization problem, the solution procedureis carried out in several
steps:

« Discretize the dynamic optimization problem, which is formulated in continuous time. The result isalarge and
sparse nonlinear program (NLP). The discretization step depends on the options as provided to the opt i mi ze
method.

56

Dynamic Optimization in Python

» Solvethe NLP.
 Postprocess the NLP solution to extract an approximate solution to the original dynamic optimization problem.

Depending on the problem, discretization may account for a substantial amount of the total solution time, or even
dominate it.

The same discretization can be reused for several solutions with different parameter values, but the same op-
tions. Discretization will be carried out each timethe opt i mi ze method is called on the model. Instead of calling
nodel . opti mi ze(opti ons=opt s), aproblem can be discretized using the pr epar e_opt i ni zat i on method:

sol ver = nodel . prepare_optim zati on(opti ons=opt s)

Alternatively, the solver can be retrieved from an existing optimization result, assol ver = res. get _sol ver().
Manipulating the solver (e.g. setting parameters) may affect the original optimization problem object and vice
versa,

The obtained solver object represents the discretized problem, and can be used to solveit using itsown opt i mi ze
method:

res = solver.optimze()

While options cannot be changed in general, parameter values, initial trajectories, external data, and NLP solver
options can be changed on the solver object. Parameter values can be updated with

sol ver . set (par anet er _nane, val ue)

and current values retrieved with

sol ver . get (par anet er _nan®e)

New initial trajectories can be set with

solver.set _init_traj(init_traj)

whereinit _traj hasthe sameformat as used with thei nit _t raj option.
External data can be updated with

sol ver. set _external _vari abl e_dat a(vari abl e_nanme, data)

(unlessthe nut abl e_ext er nal _dat a option isturned off). var i abl e_name should correspond to one of the vari-
ables used in the ext er nal _dat a option passed to pr epar e_opt i ni zat i on. dat a should be the new data, in the
same format as variable data used in the ext er nal _dat a option. The kind of external data used for the variable
(eliminated/constrained/quadratic penalty) is not changed.

Settings to the nonlinear solver can be changed with

57

Dynamic Optimization in Python

sol ver. set_sol ver _option(sol ver _nane, nane, val ue)

wheresol ver _nane iseg' | POPT' Or ' WORHP' .

6.5.1.2. Warm starting

The solver object obtained from pr epar e_opt i m zat i on can aso be used for warm starting, where an obtained
optimization solution (including primal and dual variables) isused astheinitial guessfor anew optimization with
new parameter values.

To reuse the solver's last obtained solution asinitial guess for the next optimization, warm starting can be enabled
with

sol ver.set_warm start (True)

before calling sol ver. optinize(). This will reuse the last solution for the primal variables (unless
sol ver.set_init_traj wascaled sincethelast sol ver. opti i ze) aswell asthelast solution for the dual vari-
ables.

When using the IPOPT solver with warm starting, several solver options typically also need to be set to see the
benefits, e g:

def set_warm start_options(solver, push=le-4, mu_init=1e-1):

sol ver.set _sol ver_option(' | POPT', "warmstart _init_point', 'yes')

sol ver.set_sol ver_option('IPOPT', "mu_init', nu_init)

sol ver.set_sol ver _option(' I POPT', 'warmstart_bound_push', push)

sol ver.set _sol ver_option(' | POPT', '"warm start_nult_bound_push', push)
sol ver.set_sol ver _option(' I POPT', '"warmstart_bound_frac', push)

sol ver. set _sol ver _option(' | POPT', 'warm start_slack_bound_frac', push)
sol ver.set _sol ver _option(' | POPT', 'warmstart_slack_bound_push', push)

set _warm start_options(sol ver)

Smaller values of the push and nu arguments will make the solver place more trust in that the sought solution is
closeto theinitial guess, i g, the last solution.

6.5.2. Examples

6.5.2.1. Optimal control

Thistutorial is based on the Hicks-Ray Continuously Stirred Tank Reactors (CSTR) system. The model was orig-
inally presented in [1]. The system hastwo states, the concentration, ¢, and the temperature, T. The control input to
the system is the temperature, Tc, of the cooling flow in the reactor jacket. The chemical reaction in the reactor is
exothermic, and also temperature dependent; high temperature results in high reaction rate. The CSTR dynamics
are given by:

58

Dynamic Optimization in Python

c(t) :w -koc(t)g-EdivR/T(t)
: FTyT(t) dHk
T(t) =M_p_&dt)eEdivR/T(t)+%(Tc(t)_T(t))

Thistutorial will cover the following topics:

» How to solveaDAE initialization problem. Theinitialization model has equations specifying that all derivatives
should be identically zero, which implies that a stationary solution is obtained. Two stationary points, corre-
sponding to different inputs, are computed. We call the stationary points A and B respectively. Point A corre-
spondsto operating conditionswhere the reactor is cold and the reaction rateislow, whereas point B corresponds
to a higher temperature where the reaction rate is high.

e Anoptimal control problem is solved where the objective is to transfer the state of the system from stationary
point A to point B. The challenge isto ignite the reactor while avoiding uncontrolled temperature increases. It is
also demonstrated how to set parameter and variable valuesin amodel. M oreinformation about the simultaneous
optimization algorithm can be found at IModelica.org APl documentation.

» The optimization result is saved to file and then the important variables are plotted.

The Python commands in this tutorial may be copied and pasted directly into a Python shell, in some cases with
minor modifications. Alternatively, you may copy the commandsinto atext file, e.g., cstr_casadi . py.

Start the tutorial by creating a working directory and copy the file $JMODELI CA_HOVE/ Pyt hon/ pyj ni / exam
pl es/ fil es/ CSTR nop to your working directory. An online version of CSTR. mop isalso available (depending on
which browser you use, you may have to accept the site certificate by clicking through afew steps). If you choose
to create a Python script file, save it to the working directory.

Compile and instantiate a model object

The functions and classes used in the tutorial script need to be imported into the Python script. This is done by
the following Python commands. Copy them and paste them either directly into your Python shell or, preferably,
into your Python script file.

import nunpy as N
import matplotlib. pyplot as plt

from pynodel i ca i nport conpile_fnu
frompyfm inport |oad_fmu
frompyjm inmport transfer_optim zation_probl em

To solvetheinitialization problem and simulate the model, we will first compileit asan FMU and load it in Python.
These steps are described in more detail in Section 4.

Conpile the stationary initialization nodel into an FMJ
init_fru = conpile_fm("CSTR CSTR Init", "CSTR nop")

59

https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/CSTR.mop

Dynamic Optimization in Python

Load the FMJU
init_nmodel = |oad_fru(init_fnm)

At this point, you may open the file CSTR. nop, containing the CSTR model and the static initialization model
used in this section. Study the classes CSTR. CSTRand CSTR. CSTR_I ni t and make sure you understand the models.
Before proceeding, have alook at the interactive help for one of the functions you used:

hel p(conpi | e_f nu)
Solve the DAE initialization problem

In the next step, we would like to specify the first operating point, A, by means of a constant input cooling tem-
perature, and then solve the initialization problem assuming that all derivatives are zero.

Set input for Stationary point A
Tc_0_A = 250
init_nodel.set('Tc', Tc_0_A)

Solve the initialization problemusing FM
init_nodel.initialize()

Store stationary point A
[cOA TOA =init_nodel.get(['c', 'T'])

Print sonme data for stationary point A
print(' *** Stationary point A ***')
print('Tc = %' % Tc_0_A)

print(‘c = %' %c_0_A

print(‘T =%"' %T_0_A

Notice how the method set isused to set the value of the control input. Theinitialization agorithm isinvoked by
calling the methodi ni ti al i ze, which returns aresult object from which the initialization result can be accessed.
The values of the states corresponding to point A can then be extracted from the result object. Look carefully at
the printoutsin the Python shell to see the stationary values. Display the help text for thei ni ti al i ze method and
take amoment to look it through. The procedure is now repeated for operating point B:

Set inputs for Stationary point B

init_nodel .reset() # reset the FMJ so that we can initialize it again
Tc_0_B = 280

init_nodel.set('Tc', Tc_0_B)

Solve the initialization problem using FM
init_nodel.initialize()

Store stationary point B
[c0OB T OB] =init_nodel.get(['c', 'T'])

Print some data for stationary point B
print(' *** Stationary point B ***')
print('Tc = %' % Tc_0_B)

60

Dynamic Optimization in Python

print('c
print('T

%' %c_0_B)
%' %T 0_B)

We have now computed two stationary points for the system based on constant control inputs. In the next section,
these will be used to set up an optimal control problem.

Solving an optimal control problem

The optimal control problem we are about to solveis given by

150
minu@)f (eer-e(0))?+ (17 -1(6))"+ (12 - Te(0)) e

0
subject to

230<u(t)=T(t)< 370
T(t) <350

and is expressed in Optimica format in the class CSTR. CSTR_Opt 2 in the CSTR. nop file above. Have alook at this
class and make sure that you understand how the optimization problem is formulated and what the objectiveis.

Direct collocation methods often require good initial guesses in order to ensure robust convergence. Also, if the
problem is non-convey, initialization is even more critical. Since initial guesses are needed for all discretized vari-
ables along the optimization interval, simulation provides a convenient meansto generate state and derivative pro-
filesgiven aninitial guessfor the control input(s). It isthen convenient to set up a dedicated model for computation
of initial trgjectories. In the model CSTR CSTR_I ni t _Opti mi zat i on in the CSTR. nop file, astep input is applied
to the systemin order obtain aninitial guess. Notice that the variable namesin theinitialization model must match
those in the optimal control model.

First, compile the model and set model parameters:

Conpile the optinmization initialization nodel
init_simfm = conmpile_frmu("CSTR CSTR Init_Optim zation", "CSTR nop")

Load the nodel
init_simnodel = 1oad_fmu(init_simfnu)

Set initial and reference val ues
init_simnodel.set('cstr.c_init', c_0_A)
init_simnodel.set('cstr.T_init', T_0_A)
init_simnodel.set('c_ref', c_0_B)
init_simnodel.set('T_ref', T_0_B)
init_simnodel.set('Tc_ref', Tc_0_B)

Having initialized the model parameters, we can simulate the model using the si mul at e function.

Sinulate with constant input Tc
init_res = init_simnodel.sinmulate(start_tinme=0., final_tinme=150.)

61

Dynamic Optimization in Python

The method si mul at e first computes consistent initial conditions and then simulates the model in the interval 0to
150 seconds. Take a moment to read the interactive help for the si mul at e method.

The simulation result object is returned. Python dictionary access can be used to retrieve the variable tragjectories.

Extract variable profiles
t_init_sim=init_res['time']
c_init_sim=init_res['cstr.c']
T init_sim=init_res['cstr.T]
Tc_init_sim=init_res['cstr.Tc']

Plot the initial guess trajectories
plt.close(l)

plt.figure(l)

pl t. hol d(True)

plt.subplot(3, 1, 1)

plt.plot(t_init_sim c_init_sim

plt.grid()

plt.yl abel (' Concentration')

plt.title('Initial guess obtained by simulation')

plt.subplot(3, 1, 2)
plt.plot(t_init_sim T_init_sim
plt.grid()

plt.yl abel (' Tenperature')

plt.subplot(3, 1, 3)
plt.plot(t_init_sim Tc_init_sim
plt.grid()

plt.yl abel (' Cooling tenperature')
plt.xlabel ("tinme'")

plt.show()

Look at the plots and try to relate the tragjectories to the optimal control problem. Why isthis a good initial guess?

Once theinitial guessis generated, we compile the optimal control problem:

Conpile and | oad optim zati on probl em
op = transfer_optim zation_probl en("CSTR CSTR _Opt 2", "CSTR. nop")

We will now initiaize the parameters of the model so that their values correspond to the optimization objective
of transferring the system state from operating point A to operating point B. Accordingly, we set the parameters
representing the initial values of the statesto point A and the reference values in the cost function to point B:

Set reference val ues
op.set('Tc_ref', Tc_0_B)
op.set('c_ref', float(c_0_B))
op.set('T_ref', float(T_0_B))

Set initial values
op.set('cstr.c_init', float(c_0_A))

62

Dynamic Optimization in Python

op.set('cstr.T_init', float(T_0_A))

We will also set some optimization options. In this case, we decrease the number of finite elements in the mesh
from 50 to 19, to be ableto illustrate that simulation and optimization might not give the exact sameresult. Thisis
done by setting the corresponding option and providing it as an argument to the opt i ni ze method. We also lower
the tolerance of IPOPT to get a more accurate result. We are now ready to solve the actual optimization problem.
Thisis done by invoking the method opt i ni ze:

Set options

opt_opts = op.optimnm ze_options()
opt_opts['n_e'] = 19 # Nunber of elenents
opt_opts['init_traj'] = init_res
opt_opts['nominal _traj'] = init_res
opt_opts['IPOPT_options']['tol'] = 1le-10

Solve the optimal control problem
res = op.optimze(opti ons=opt_opts)

Y ou should see the output of IPOPT in the Python shell as the algorithm iterates to find the optimal solution.
IPOPT should terminate with amessage like 'Optimal solution found' or 'Solved to acceptable level’ in order for an
optimum to have been found. The optimization result object isreturned and the optimization dataare storedinr es.

We can now retrieve the trajectories of the variables that we intend to plot:

Extract variable profiles
c_res =res['cstr.c']

Tres =res['cstr.T']
Tc_res = res['cstr.Tc']
time_res =res['tine']
c_ref =res['c_ref']

T ref =res['T_ref']

Tc_ref =res['Tc_ref']

Finally, we plot the result using the functions available in matplotlib:

Plot the results

plt.close(2)

plt.figure(2)

pl t. hol d(True)

plt.subplot(3, 1, 1)
plt.plot(tine_res, c_res)
plt.plot(tine_res, c_ref, '--")
plt.grid()

pl t.yl abel (' Concentration')
plt.title('Optimzed trajectories')

plt.subplot(3, 1, 2)
plt.plot(tine_res, T res)
plt.plot(tine_res, T ref, '--")
plt.grid()

plt.yl abel (' Tenperature')

63

Dynamic Optimization in Python

plt.subplot(3, 1, 3)
plt.plot(tine_res, Tc_res)
plt.plot(tinme_res, Tc_ref, '--')
plt.grid()

plt.yl abel (' Cooling tenperature')
plt.xlabel ("time'")

plt.show()

Y ou should now see the plot shown in Figure 6.2.

Optimized trajectories

Concentration

2‘0 4‘0 éO éO 160 1‘20 11‘10 160
time

Figure 6.2 Optimal profilesfor the CSTR problem.

Take aminute to analyze the optimal profiles and to answer the following questions:

1. Why isthe concentration high in the beginning of the interval?

2. Why isthe input cooling temperature high in the beginning of the interval ?

Verify optimal control solution

Solving optimal control problems by means of direct collocation implies that the differential equation is approxi-
mated by a time-discrete counterpart. The accuracy of the solution is dependent on the method of collocation and
the number of elements. In order to assess the accuracy of the discretization, we may simulate the system using the
optimal control profile asinput. With this approach, the state profiles are computed with high accuracy and the re-
sult may then be compared with the profiles resulting from optimization. Notice that this procedure does not verify
the optimality of the resulting optimal control profiles, but only the accuracy of the discretization of the dynamics.

We start by compiling and loading the model used for simulation:

64

Dynamic Optimization in Python

Conpi | e nodel
simfm = conpile_fm("CSTR CSTR', "CSTR nop")

Load nodel
sim nmodel = | oad_f nu(si mfnu)

The solution obtained from the optimization are values at afinite number of time paints, in this case the collocation
points. The CasADi framework also supports obtaining all the collocation polynomials for all the input variables
in the form of a function instead, which can be used during simulation for greater accuracy. We obtain it from the
result object in the following manner.

Get optimzed input
(_, opt_input) = res.get_opt_input()

We specify theinitial values and simulate using the optimal trajectory:

Set initial values
simnodel .set('c_init', c_0_
simnodel .set('T_init', T_0_

=2

Sinulate using optimzed input
simopts = simnodel.sinulate_options()
simopts[' CVode_options']['rtol"]
simopts[' CVode_options']["'atol"'] le-8
res = simnodel.sinmulate(start_time=0., final_tine=150.,

i nput=('Tc', opt_input), options=simopts)

Finally, we load the smulated data and plot it to compare with the optimized trajectories:

Extract variable profiles
c_simrres['c']

T sinmrres['T']

Tc_sinrres[' Tc']
time_sim=res['tine']

Plot the results

plt.figure(3)

plt.clf()

pl t. hol d(True)

pl t. subpl ot (311)
plt.plot(tine_res,c_res,'--")
plt.plot(time_simc_sim
plt.legend(('optimzed','sinmulated'))
plt.grid()

plt.yl abel (' Concentration')

pl t. subpl ot (312)
plt.plot(tine_res, T res,'--")
plt.plot(tinme_simT_sim
plt.legend(('optim zed','simulated))
plt.grid()

65

Dynamic Optimization in Python

pl t.yl abel (' Tenperature')

pl t. subpl ot (313)

plt.plot(tine_res, Tc_res,'--")
plt.plot(tinme_sim Tc_sim
plt.legend(('optimzed','sinmulated))
plt.grid()

plt.yl abel (' Cooling tenperature')
plt.xlabel ("time'")

plt.show()

Y ou should now see the plot shown in Figure 6.3.

Verification

-~ optimized|]
700k ; ; : ; — simulated|]

Concentration

2‘0 4‘0 éO 86 160 1‘20 14‘10 160
time

Figure 6.3 Optimal control profiles and simulated trajectories corresponding to the optimal control input.

Discuss why the simulated trajectories differ from their optimized counterparts.

Exercises

After completing the tutorial you may continue to modify the optimization problem and study the resullts.

1. Removethe constraint on cst r. T. What is then the maximum temperature?

2. Play around with weights in the cost function. What happens if you penalize the control variable with a larger
weight? Do a parameter sweep for the control variable weight and plot the optimal profilesin the same figure.

3. Add terminal constraints (cst r. T(fi nal Ti me) =somePar anet er) for the states so that they are equal to point
B at the end of the optimization interval. Now reduce the length of the optimization interval. How short can
you make the interval ?

66

Dynamic Optimization in Python

4. Try varying the number of elementsin the mesh and the number of collocation pointsin each interval.
References

[1] G.A. Hicks and W.H. Ray. Approximation Methods for Optimal Control Synthesis. Can. J. Chem. Eng.,
40:522-529, 1971.

[2] Bieger, L., A. Cervantes, and A. Wéchter (2002): "Advancesin simultaneous strategies for dynamic optimiza-
tion." Chemical Engineering Science, 57, pp. 575-593.

6.5.2.2. Minimum time problems

Minimum time problems are dynamic optimization problems where not only the control inputs are optimized,
but also the final time. Typically, elements of such problemsinclude initial and terminal state constraints and an
objective function where the transition time is minimized. The following example will be used to illustrate how
minimum time problems are formulated in Optimica. We consider the optimization problem:

mint
o)

subject to the Van der Pol dynamics:

Xl =(1'X%)X1'X2+u, X1(0)=0

XZ =X X2(0)=1

and the constraints:

x(tr) =0, x,(tr) =0

-l<u(f) <1

This problem is encoded in the following Optimica specification:

optim zation VDP_Opt _M n_Ti me (objective = finalTine,
startTine = O,
final Ti me(free=true, m n=0.2,initial Guess=1))

/] The states

Real x1(start
Real x2(start

0, fi xed=true);
1, fixed=true);

/1 The control signal
i nput Real u(free=true, m n=-1, max=1);

equati on
/1 Dynam c equati ons
der(x1) = (1 - x272) * x1 - x2 + u;

67

Dynamic Optimization in Python

der (x2) = x1,;

constrai nt
/1 term nal constraints
x1(fi nal Ti ne) =0;
x2(final Ti me) =0;

end VDP_Opt _M n_Ti ne;

Noticehow theclassattributef i nal Ti ne isset to befreein the optimization. The problemissolved by thefollowing
Python script:

|l nport nunerical libraries
import nunpy as N
import matplotlib. pyplot as plt

I nport the JModelica.org Python packages

from pynodelica i nport conpile fnu

frompyfm inport |oad_fnmnu

frompyjm inport transfer_optim zation_problem

vdp
res

transfer_optim zation_probl en("VDP_Opt_M n_Ti ne", "VDP_Opt_M n_Ti nme. nop")
vdp. opti m ze()

Extract variable profiles
xl=res['x1']

x2=res[' x2']

u=res['u']

t=res['time']

Pl ot
plt.figure(l)
plt.clf()

pl t. subpl ot (311)
plt.plot(t,x1)
plt.grid()
plt.ylabel ('x1")

pl t. subpl ot (312)
plt.plot(t,x2)
plt.grid()
plt.yl abel (' x2")

pl t. subpl ot (313)
plt.plot(t,u,'x-")
plt.grid()
plt.ylabel ("u")
plt.xlabel ("tinme')
plt.show()

The resulting control and state profiles are shown in Figure 6.4. Notice the difference as compared to Figure
Figure 6.1, where the Van der Pol oscillator system is optimized using a quadratic objective function.

68

Dynamic Optimization in Python

1.0 1.5
time

Figure 6.4 Minimum time profiles for the Van der Pol Oscillator.

6.5.2.3. Optimization under delay constraints

In some applications, it can be useful to solve dynamic optimization problems that include time delays in the
model. Collocation based optimization schemes are well suited to handle thiskind of models, since the whole state
trajectory is available at the same time. The direct collocation method using CasADi contains an experimental
implementation of such delays, which we will describe with an example. Please note that the implementation of
thisfeature is experimental and subject to change.

We consider the optimization problem
1

r\’ﬁl(it?o(4x(t)2+ u(9%+ u(t)) dt

subject to the dynamics

X(0)= 1,9 -2u(t)
uy(t)=uy(t 'tdelay)

and the boundary conditions

x(0)=1
x(1)=0
u,(t)=0.25,t <tdelay

69

Dynamic Optimization in Python

The effect of positive u; isinitialy to increase x, but after atime delay of time t4el4y, it comes back with twice
the effect in the negative direction through u,,.

We model everything except the delay constraint in the Optimica specification

optim zation Del ayTest(startTime = 0, finalTime = 1
obj ectivel ntegrand = 4*x"2 + ul”2 + u2/2)
input Real ul, u2
Real x(start = 1, fixed=true);
equati on
der(x) = ul - 2*u2
constrai nt
x(final Time) =0
end Del ayTest;

The problem is then solved in the following Python script. Notice how the delay constraint is added using the
del ayed_f eedback option, and theinitial part of u, is set using thei ni ti al Guess éttribute:

lmport nunerical |ibraries

i mport numpy as np
import matplotlib. pyplot as plt

| nport JModel i ca.org Pyt hon packages
frompyjm inmport transfer_optim zation_problem

n_e = 20
delay n e =5
horizon = 1.0
del ay = horizon*delay n_e/n_e

Conpile and | oad optim zati on probl em

opt = transfer_optim zation_probl en{"Del ayTest", "Del ayedFeedbackOpt. nop")

Set value for u2(t) when t < del ay
opt.getVariable('u2').setAttribute('initialGuess', 0.25)

Set al gorithm options

opts = opt.optim ze_options()

opts['n_e'] = n_e

Set del ayed feedback fromul to u2

opts[' del ayed_feedback'] = {'u2': ('ul', delay_n_e)}

Optimze
res = opt.optim ze(opti ons=opts)

Extract variable profiles
x_res = res['x"]

ul res res['ul']

u2_res res['u2']

time_res = res['tine']

70

Dynamic Optimization in Python

Plot results

plt.plot(tine_res, x_res, tine_res, ul res, tine_res, u2_res)
pl t. hol d(True)

plt.plot(tine_res+delay, ul res, '--')

pl t. hol d(Fal se)

plt.legend(('x", 'ul', 'u2', 'delay(ul)'))

plt.show()

The resulting control and state profiles are shown in Figure 6.5. Notice that x growsinitially since u; is set positive
to exploit the greater control gain that appears delayed through u,. Attime 1 -tqel,y, the delayed value of u; ceases

to influence x within the horizon, and u; immediately switches sign to drive down x toitsfinal valuex(1) = 0.

15
— X
ul
1.0
u2
- delay(ul)
0.5} ‘ i
I
}
I
0.0t
I
I
I
-0.5} [
1
I
I
—-1.0} “
I
! -
_15} /’l‘ ///,
295 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 6.5 Optimization result for delayed feedback example.

6.5.2.4. Parameter estimation

Inthistutorial it will be demonstrated how to solve parameter estimation problems. We consider a quadruple tank

system depicted in Figure 6.6.

71

Dynamic Optimization in Python

1-n 17
\
Tank 3 Tank 4
1_\ [T 9 |
e 24
Pump 1 Pump 2
Tank 1 Tank 2 @
uy Uz
1 I

Figure 6.6 A schematic picture of the quadruple tank process.

The dynamics of the system are given by the differential equations:

. a
X = 'A_Z\/29X1
. ap
X2 = 'A_Z\IZQXZ

=g L
X3 :'A_3 29X3 + 4, Uy

. s o B
Xy A4 29Xy +=7,

up

\/257+A Uy
\/29_?(4+A Uy

Where the nominal parameter values are given in Table 6.3.

Table 6.3 Parameters for the quadruple tank process.

Parameter name Value Unit
A 49 cm?
aj 0.03 cm?
i 0.56 cm?vist
0.3 vem?t

The states of the model are the tank water levels x1, x2, x3, and x4. The control inputs, ul and u2, are the flows
generated by the two pumps.

72

Dynamic Optimization in Python

The Modelicamodel for the system islocated in QuadTankPack.mop. Download thefile to your working directory
and open it in atext editor. Locate the class QuadTankPack. QuadTank and make sure you understand the model.
In particular, notice that all model variables and parameters are expressed in Sl units.

Measurement data, available in qt _par_est _dat a. mat , has been logged in an identification experiment. Down-
load also thisfile to your working directory.

Open atext fileand nameit gt _par _est _casadi . py. Then enter the imports:

i mport os
from collections inport O deredDict

fromscipy.io.matlab.mo inport |oadmat
import matplotlib. pyplot as plt
import nunpy as N

from pynodelica i nport conpile fnu

frompyfm inport |oad_fnmnu

frompyjm inport transfer_optim zation_problem

from pyjm .optim zation.casadi _col | ocati on inmport External Data

into the file. Next, we compile the model, which is used for simulation, and the optimization problem, which is
used for estimating parameter values. We will take a closer look at the optimization formulation later, so do not
worry about that one for the moment. The initial states for the experiment are stored in the optimization problem,
which we propagate to the model for simulation.

Conpile and | oad FMJ, which is used for sinulation
nodel = | oad_f mu(conpil e_fnu(' QuadTankPack. QuadTank', "QuadTankPack. mop"))

Transfer problemto CasAD Interface, which is used for estimation
op = transfer_optim zation_probl en(" QuadTankPack. QuadTank_Par Est CasADi ",
"QuadTankPack. nop")

Set initial states in nodel, which are stored in the optin zation problem
Xx_0 _names = ['x1_0', 'x2. 0", 'x3 0, 'x4.0']

x_0_val ues = op. get (x_0_nanes)

nodel . set (x_0_nanes, x_0_val ues)

Next, we enter code to open the data file, extract the measurement time series and plot the measurements:

Load neasurenent data fromfile
data = | oadnmat ("qt_par_est_data. mat", appendnmat =Fal se)

Extract data series
t_nmeas = data['t'][6000::100, 0] - 60

yl neas = data['yl f'][6000::100, 0] / 100
y2_neas = data['y2 f'][6000::100, 0] / 100
y3_neas = data['y3_d'][6000::100, 0] / 100
y4 _neas = data['y4_d'][6000::100, 0] / 100

73

https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/QuadTankPack.mop
https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/qt_par_est_data.mat

Dynamic Optimization in Python

ul
u2

= data['ul_d'][6000::100, O]
= data['u2_d'][6000::100, O]
Pl ot neasurenents and inputs
plt.cl ose(1)

plt.figure(l)

plt.subplot(2, 2, 1)
plt.plot(t_neas, y3_neas)
plt.title('x3")

plt.grid()

plt.subplot(2, 2, 2)
plt.plot(t_neas, y4_neas)
plt.title('x4")

plt.grid()

plt.subplot(2, 2, 3)
plt.plot(t_neas, yl neas)
plt.title('x1")

plt.xlabel ("t[s]")

plt.grid()

plt.subplot(2, 2, 4)
plt.plot(t_neas, y2_neas)
plt.title('x2")

plt.xlabel ("t[s]"')

plt.grid()

plt.close(2)
plt.figure(2)
plt.subplot(2, 1, 1)
plt.plot(t_neas, ul)
pl t. hol d(True)
plt.title('ul")
plt.grid()
plt.subplot(2, 1, 2)
plt.plot(t_meas, u2)
plt.title('u2")
plt.xlabel ("t[s]")
pl t. hol d(True)
plt.grid()
plt.show()

Y ou should now see two plots showing the measurement state profiles and the control input profiles similar to
Figure 6.7 and Figure 6.8.

74

Dynamic Optimization in Python

0.029 0.031
0.030
0.028 0,020
0.027 0.028
0.027
0-026 0.026
0.025 0.025
0.024
0.024 0023
0023520 30 a0 50 60 0%
0.068
0.070 0.067
0.066
0.068 10.065
0.066 0.064
0.063
0.064 J0.062
0.061

0'0620 10 20 30 40 50 600'0600 10 20 30 40 50 60

tls] tls]

Figure 6.7 Measured state profiles.

ul
6.2 T

Figure 6.8 Control inputs used in the identification experiment.

In order to evaluate the accuracy of nominal model parameter values, we simulate the model using the same ini-
tial state and inputs values as in the performed experiment used to obtain the measurement data. First, a matrix
containing the input trajectoriesis created:

Build input trajectory matrix for use in sinulation

75

Dynamic Optimization in Python

u = N.transpose(N. vstack([t_meas, ul, u2]))

Now, the model can be simulated:

Simul ate nodel response with nom nal paraneter val ues
res_sim= nodel.simulate(input=(['ul", "u2'], u),
start_tinme=0., final _tine=60.)

The simulation result can now be extracted:

Load sinmulation result
x1_sim= res_sinf'xl"]
x2_sim=res_sin|'x2"]
x3_sim= res_sin]'x3"]
x4_sim=res_sin|'x4']
t_sim =res_sin'tine']
ul sim=res_sin{'ul']
u2_sim=res_sinf'u2']

and then plotted:

Plot sinmulation result
plt.figure(l)
plt.subplot(2, 2, 1)
plt.plot(t_sim x3_sim
plt.subplot(2, 2, 2)
plt.plot(t_sim x4_sim
plt.subplot(2, 2, 3)
plt.plot(t_sim x1_sim
plt.subplot(2, 2, 4)
plt.plot(t_sim x2_sim

plt.figure(2)

plt.subplot(2, 1, 1)
plt.plot(t_sim ul sim 'r")
plt.subplot(2, 1, 2)
plt.plot(t_sim u2_sim 'r'")
plt.show()

Figure 6.9 shows the result of the simulation.

76

Dynamic Optimization in Python

0.031
0.030F i
0.020f i
0.028}

0.027}

|0.026}

10.025F
|0.024 [/ :
: : 0.023RJ i
0.023 ‘ - o 0.022 : ‘

0.029
0.028}

0.027p//\
0.026
0.025H-\
0.024

0 10 20 30 40 50 60
x1
0.075 T T T T T 0.068

0.066
10.064 o
Jo.062f/

0.060
10.058}
10.056] N\
0.054 -
0 10 20 30 40 50 60°°°%0 10 20 30 40 50 60

tls] tls]

0.070f e
0.065} /7
0.060

0.055 oot

0.050

Figure 6.9 Simulation result for the nominal model.

Here, the simulated profiles are given by the green curves. Clearly, there isamismatch in the response, especially
for the two lower tanks. Think about why the model does not match the data, i.e., which parameters may have
wrong values.

The next step towards solving a parameter estimation problem is to identify which parametersto tune. Typicaly,
parameters which are not known precisely are selected. Also, the sel ected parameters need of course affect the mis-
match between model response and data, when tuned. In afirst attempt, we aim at decreasing the mismatch for the
two lower tanks, and therefore we sel ect the lower tank outflow areas, al and a2, as parametersto optimize. The Op-
timica specification for the estimation problem is contained in the class uadTank Pack. QuadTank_Par Est CasADi :

optim zati on QuadTank_Par Est CasADi (start Ti mre=0, fi nal Ti me=60)

ext ends QuadTank(x1(fixed=true), x1_0=0.06255,
x2(fixed=true), x2_0=0.06045,
x3(fixed=true), x3_0=0.02395,
x4(fixed=true), x4_0=0.02325,
al(free=true, mn=0, nmax=0.1le-4),
a2(free=true, m n=0, nax=0.1e-4));

end QuadTank_Par Est CasADi ;

We have specified the time horizon to be one minute, which matches the length of the experiment, and that we
want to estimate al and a2 by setting f r ee=t r ue for them. Unlike optimal control, the cost function is not specified
using Optimica. Thisisinstead specified from Python, using the Ext er nal Dat a class and the code below.

Create external data object for optimzation

77

Dynamic Optimization in Python

Q= Ndiag([1., 1., 10., 10.])
data_x1 = N.vstack([t_neas, yl neas])

data_x2 = N. vstack([t_neas, y2_mneas])
data_ul = N.vstack([t_neas, ul])
data_u2 = N vstack([t_neas, u2])

quad_pen = OrderedDict ()

quad_pen['x1'] = data_x1
quad_pen['x2'] = data_x2
quad_pen['ul'] = data_ul
quad_pen['u2'] = data_u2

external _data = External Dat a(@=Q quad_pen=quad_pen)

Thiswill create an objective which is the integral of the squared difference between the measured profiles for x1
and x2 and the corresponding model profiles. We will aso introduce corresponding penalties for the two input
variables, which areleft as optimization variables. It would also have been possible to eliminate the input variables
from the estimation problem by using the el i mi nat ed parameter of Ext er nal Dat a. See the documentation of
Ext er nal Dat a for how to do this. Finally, we use a square matrix Q to weight the different components of the
objective. We choose larger weights for the inputs, as we have larger faith in those values.

We are now ready to solve the optimization problem. We first set some options, where we specify the number of
elements (time-discretization grid), the external data, and also provide the simulation with the nominal parameter
valuesasan initial guessfor the solution, which is also used to scale the variables instead of the variables nominal
attributes (if they have any):

Set optimzation options and optim ze

opts = op.optinize_options()

opts['n_e'] = 60 # Nunber of collocation el ements
opts['external _data'] = external _data

opts['init_traj'] =res_sim

opts['nom nal _traj'] = res_sim

res = op.optimze(options=opts) # Sol ve estimation problem

Now, let's extract the optimal values of the parameters al and a2 and print them to the console:
Extract estimated val ues of paraneters

al_opt = res.initial("al")

a2 _ opt =res.initial("a2")

Print estinmated paraneter val ues

print('al: ' + str(al_opt*le4) + 'cm2')

print('a2: ' + str(a2_opt*led) + 'cm2')

Y ou should get an output similar to:

al: 0.0266cm'2
a2: 0.0271cm\2

The estimated values are dlightly smaller than the nominal values - think about why this may be the case. Also
note that the estimated values do not necessarily correspond to the physicaly true values. Rather, the parameter

78

Dynamic Optimization in Python

values are adjusted to compensate for all kinds of modeling errors in order to minimize the mismatch between
model response and measurement data.

Next we plot the optimized profiles:

Load state profiles

x1_opt = res["x1"]
x2_opt = res["x2"]
x3_opt = res["x3"]
x4_opt = res["x4"]
ul opt = res["ul"]
u2_opt = res["u2"]
t_opt =res["time"]

Plot estimated trajectories
plt.figure(l)

plt.subplot(2, 2, 1)
plt.plot(t_opt, x3_opt, 'k')
plt.subplot(2, 2, 2)
plt.plot(t_opt, x4 _opt, 'k')
plt.subplot(2, 2, 3)
plt.plot(t_opt, x1_opt, 'k')
plt.subplot(2, 2, 4)
plt.plot(t_opt, x2_opt, 'k')

plt.figure(2)

plt.subplot(2, 1, 1)
plt.plot(t_opt, ul_opt, 'k')
plt.subplot(2, 1, 2)
plt.plot(t_opt, u2_opt, 'k')
pl t.show()

Y ou will seethe plot shown in Figure 6.10.

79

Dynamic Optimization in Python

0.029 0.031
0.030F i
0.020f i
0.028}
0.027}
|0.026}
{0.025} (/- NV
[0.024f4f-
0.023NgJ i

0'0230 10 20 30 40 50 600'022

x1
0.075 T T T T T 0.068

0.066
10.064 [
Jo.062f £

0.060K o
10.058}
10.056] N\
0.054 -
0 10 20 30 40 50 60°°°%0 10 20 30 40 50 60

tls] tls]

0.028}
0.027 /N
0.026
0.025H--\ i
0.024f i \\

0.070f e

0.065[-

0.060

0.055 oot

0.050

Figure 6.10 State profiles corresponding to estimated values of al and a2.

The profiles corresponding to the estimated values of al and a2 are shown in black curves. As can be seen, the
match between the model response and the measurement data has been significantly improved. |s the behavior of
the model consistent with the estimated parameter values?

Nevertheless, there is still a mismatch for the upper tanks, especially for tank 4. In order to improve the match, a
second estimation problem may be formulated, where the parameters al, a2, a3, a4 are free optimization variables,
and where the squared errors of all four tank levels are penalized. Do this as an exercise!

6.5.3. Investigating optimization progress

This section describes some tools that can be used to investigate the progress of the nonlinear programming solver
on an optimization problem. This information can be useful when debugging convergence problems; some of it
(e.g. dual variables) may also be useful to gain abetter understanding of the properties of an optimization problem.
To make sense of the information that can be retrieved, we first give an overview of the collocation procedure that
transcribes the optimization problem into a Nonlinear Program (NLP).

Methods for inspecting progress are divided into low level and high level methods, where the low level methods
provide details of the underlying NLP while the high level methods are oriented towards the optimization problem
as seen in the model formulation.

All functionality related to inspection of solver progress is exposed through the solver object as returned through
the pr epar e_opt i ni zat i on method. If the optimization has been done through the opt i m ze method instead, the
solver can be obtained asin

res = nodel . optim ze(opti ons=opts)

80

Dynamic Optimization in Python

sol ver = res. get_sol ver ()
6.5.3.1. Collocation

To be able to solve a dynamic optimization problem, it is first discretized through collocation. Time is divided
into elements (time intervals), and time varying variables are approximated by alow order polynomial over each
element. Each polynomial pieceis described by sample values at a number of collocation points (default 3) within
the element. The result is that each time varying variable in the model is instantiated into one NLP variable for
each collocation point within each element. Some variables may also need to be instantiated at additional points,
such astheinitia point which istypically not a collocation point.

The equationsin amodel are divided into initial equations, DAE equations, path constraints and point constraints.
These equations are also instantiated at different time points to become constraints in the NLP. Initial equations
and point constraints are instantiated only once. DAE equations and path constraints are instantiated at collocation
point of each element and possibly some additional points.

When using the methods described bel ow, each model equationisreferredtoasapair (eqt ype, egqi nd) . Thestring
eqtype may beeither initial',' dae',' path_eq',' path_ineq',' point_eq',0r"' point_ineq . Theequation
index eqi nd gives the index within the given equation type, and is a nonnegative integer less than the number of
equations within the type. The symbolic model equations corresponding to given pairs (eqt ype, eqi nd) can be
retrieved through the get _equat i ons method:

eq = sol ver. get _equati ons(eqtype, 0) # first equation of type eqtype
eqs = sol ver. get _equations(eqtype, [1,3]) # second and fourth equation
all _eqs = sol ver. get_equati ons(eqtype) # all equations of the given type

Apart from the model equations, collocation may also instantiate additional kinds of constraints, such as continuity
constraints to enforce continuity of states between elements and collocation constraints to prescribe the coupling
between states and their derivatives. These constraints have their own eqt ype strings. A list of all equation types
that are used in agiven model can be retrieved using

eqtypes = sol ver. get_constraint_types()
6.5.3.2. Inspecting residuals

Given a potential solution to the NLP, the residual of a constraint is a number that specifies how close it isto
being satisfied. For equalities, the residual must be (close to) zero for the solution to be feasible. For inequalities,
the residual must be in a specified range, typically nonpositive. The constraint violation is zero if the residua is
within bounds, and gives the signed distance to the closest bound otherwise; for equality constraints, this is the
same as the residual. Methods for returning residuals actually return the violation by default, but have an option
to get the raw residual.

For afeasible solution, al violations are (almost) zero. If an optimization converges to an infeasible point or does
not have time to converge to a feasible one then the residual s show which constraints the NLP solver was unable
to satisfy. If one problematic constraint comes into conflict with a number of constraints, al of them will likely
have nonzero violations.

81

Dynamic Optimization in Python

Residual values for a given equation type can be retrieved as a function of time through
r = sol ver.get_residual s(eqtype)

where r is an array of residuals of shape (n_ti mepoi nts, n_equations). There are also optional arguments:
i nds gives a subset of equation indices (e.g. i nds=[0, 1]), poi nt specifies whether to evaluate residuals at the
optimization solution (poi nt =" opt ', default) or the initial point (poi nt =" init'), and r aw specifies whether to
return constraint violations (r aw=Fal se, default) or raw residuas (r aw=Tr ue).

The corresponding time points can be retrieved with
t, i, k = solver.get_constraint_poi nts(eqtype)
wheret, i, and k are vectors that give the time, element index, and collocation point index for each instantiation.

To get an overview of which residuals are the largest,

sol ver. get _resi dual _norns()

returns alist of equation types sorted by descending residual norm, and

sol ver. get _resi dual _norns(eqtype)
returns alist of equation indices of the given type sorted by residual norm.

By default, the methods above work with the unscaled residuals that result directly from collocation. If the
equat i on_scal i ng option is turned on, the constraints will be rescaled before they are sent to the NLP solver.
It might be of more interest to look at the size of the scaled residuals, since these are what the NLP solver will
try to make small. The above methods can then be made to work with the scaled residuals instead of the unscaled
by use of the scal ed=Tr ue keyword argument. The residual scale factors can aso be retrieved in analogy to
sol ver. get _resi dual s through

scal es = sol ver. get _residual _scal es(eqtype)

and an overview of the residual scale factors (or inverse scale factors with i nv=Tr ue) can be gained from

sol ver. get _residual _scal e_norns()
6.5.3.3. Inspecting the constraint Jacobian

When solving the collocated NLP, the NLP solver typically has to evaluate the Jacobian of the constraint residual
functions. Convergence problems can sometimes be related to numerical problems with the constraint Jacobian.
In particular, Ipopt will never consider a potential solution if there are nonfinite (infinity or not-a-number) entries
in the Jacobian. If the Jacobian has such entries at the initial guess, the optimizer will give up completely.

The constraint Jacobian comes from the NLP. As seen from the original model, it contains the derivatives of the
model equations (and also e.g. the collocation eguations) with respect to the model variables at different time
points. If one or several problematic entries are found in the Jacobian, it is often helpful to know the model equation
and variable that they correspond to.

82

Dynamic Optimization in Python

The set of (model equation, model variable) pairs that correspond to nonfinite entries in the constraint Jacobian
can be printed with

sol ver. print_nonfinite_jacobian_entries()
or returned with

entries = solver.find_nonfinite_jacobian_entries()

There are a'so methods to allow to make more custom analyses of this kind. To instead list all Jacobian entries
with an absolute value greater than 10, one can use

J = solver.get_nlp_jacobian() # Get the raw NLP constraint Jacobian as a (sparse)
sci py.csc_matrix

Find the indices of all entries with absol ute value > 10
J.data = abs(J.data) > 10
c_inds, xx_inds = N nonzero(J)

entries = sol ver.get_nodel jacobian_entries(c_inds, xx_inds) # Map the indices to equations
and vari ables in the nodel
sol ver.print_jacobian_entries(entries) # Print them

To get the Jacobian with residual scaling applied, usethe scal ed_r esi dual s=Tr ue option.

6.5.3.4. Inspecting dual variables

Many NLP solvers (including Ipopt) produce a solution that consists of not only the primal variables (the actual
NLP variables), but also one dual variable for each constraint in the NLP. Upon convergence, the value of each
dual variable givesthe change in the optimal objective per unit change in the residual. Thus, the dual variables can
give an idea of which constraints are most hindering when it comes to achieving alower objective value, however,
they must be interpreted in relation to how much it might be possible to change any given constraint.

Dual variable values for a given equation type can be retrieved as a function of time through
d = sol ver.get_constrai nt_dual s(eqtype)

in analogy to sol ver.get_residuals. To get constraint duals for the equation scaled problem, use the
scal ed=Tr ue keyword argument. Just aswith get _r esi dual s, the corresponding time points can beretrieved with

t, i, k = solver.get_constraint_poi nts(eqtype)

Besides regular constraints, the NL P can also contain upper and lower bounds on variables. These will correspond
to the Modelica mi n and max attributes for instantiated model variables. The dual variables for the bounds on a
given model variablevar can be retrieved as a function of time through

d = sol ver. get_bound_dual s(var)
The corresponding time points can be retrieved with

t, i, k = solver.get_variabl e_poi nts(var)

83

Dynamic Optimization in Python

6.5.3.5. Inspecting low level information about NLP solver progress

The methods described above generally hide the actual collocated NLP and only require to work with model vari-
ables and equations, instantiated at different points. There also exist lower level methodsthat exposethe NLP level
information and its mapping to the original model more directly, and may be useful for more custom applications.
These include

e get_nlp_vari abl es, get _nl p_resi dual s, get _nl p_bound_dual s, and get _nl p_constrai nt _dual s to get
raw vectors from the NL P solution.

e get_nl p_vari abl e_bounds andget _nl p_resi dual _bounds to get the corresponding bounds used in the NLP.
e get_nl p_residual _scal es to get the raw residual scale factors.

e get_nl p_variabl e_i ndi ces and get _nl p_const rai nt _i ndi ces to get mappings from model variables and
equations to their NL P counterparts.

e get_poi nt _ti me to get the times of collocation points(i, k).

e get_nodel _vari abl es and get _nmodel _const rai nt s to map from NLP variables and constraints to the corre-
sponding model variables and equations.

The low level constraint Jacobian methods get nl p_j acobi an, get _nodel _j acobi an_entries, and the
print_j acobi an_ent ri es method have already been covered in the section about jacobians above.

See the docstring for the respective method for more information.

6.5.4. Eliminating algebraic variables

When the algorithm of this section isused, it is applied on the full DAE, meaning that all of the algebraic variables
and equations are exposed to the numerical discretization and need to be solved by the NLP solver. It is often
beneficial to instead solve some of these algebraic equations in a symbolic pre-processing step. This subsection
describes how this can be done.

JModelica.org has two different frameworks for performing such eliminations. The first one is not described in
this User's Guide, but an example demonstrating its use can be found in pyj mi . exanpl es. ccpp_el i mi nat i on.
It isimplemented as a part of CasADi Interface, whereas the second framework, which is the focus of this sub-
section, isimplemented in Python. The elimination framework in CasADi Interface has faster pre-processing, but
has limitations regarding what kind of algebraic variables it can eliminate and also lacks important features such
as tearing and sparsity preservation. For more details on the inner workings of the Python-based framework, see
Chapter 4in [Mag2016].

6.5.4.1. Basic use

To leave everything in the hands of the framework, simply transfer an optimization problem as per usual and use
the following Python code snippet.

Dynamic Optimization in Python

frompyjm.synbolic_elimnation inport BLTOpti m zati onProblem Elim nationOptions
op = transfer_optim zation_probl en(class_nane, file_nanme) # Regul ar conpilation
op BLTOpt i m zati onProbl en(op) # Synbolically elimnate al gebraic vari abl es

Y ou can then proceed as usual. There is however one caveat. The min and max attributes of eliminated algebraic
variables will not be respected. If this is undesired, these bounds should either be converted into constraints (not
recommended), or the corresponding variables should be marked as ineliminable as described in Section 6.5.4.2.

6.5.4.2. Small example

To demonstrate the wuse and effects of the framework, we consider the example
pyj m . exanpl es. el i ni nati on_exanpl e. Notethat this example isintended to be pedagogical, rather than show-
ing the performance gains of the techniques. For a real-world example where the framework offers significant
performance gains, see pyj ni . exanpl es. ccpp_sym el i m where the solution time is reduced by a factor of 5.

The following artificial Modelica and Optimica code is used in this example.

opti m zation Elim nati onExanpl e(fi nal Ti me=4,
obj ecti vel nt egrand=(x1- 0. 647) "2+x2"2+(u- 0. 0595) *2+(y1- 0. 289) *2)
Real x1(start=1, fixed=true);
Real x2(start=1, fixed=true);
Real yil(start=0.3, max=0.41);
Real y2(start=1);
Real y3(start=1);
Real y4(start=1);
Real y5(start=1);
i nput Real u;
equati on
der (x1) = x2;
der(x2) + yl + y2 - y3 = u;
x1*y3 + y2 - sqrt(x1l) - 2 = 0;
2*yl*y2*y4 - sqrt(x1l) = 0;
yl*y4 + sqrt(y3) - x1 - y4 = u;
y4 - sqrt(y5) = 0;
y57"2 - x1 = 0;
end Eli m nati onExanpl e;

We start as usual by transferring the optimization problem to CasADi Interface.
op = transfer_optin zati on_probl en{"El i m nati onExanpl e", file_path, conpiler_options={})

Next we prepare the symbolic elimination. An important part of thisisthe manual selection of algebraic variables
that are not allowed to be eliminated. In general, it is recommended to not eliminate the following variables:

» Variableswith potentially active bounds (min or max attributes). When variables are eliminated, their min
and max attributes are neglected. This is because many Modelica variables have min and max attributes that
are not intended to constrain the optimization solution. Preserving these bounds during elimination is highly
inefficient. Since thereisno way for the toolchain to know which variables may be actively constrained by their
min and max attributes, it is up to the user to provide the names of these variables.

85

Dynamic Optimization in Python

» Variablesthat occur in theabjectiveor constraints. Marking these variablesasineliminableislessimportant,
but can yield performance improvements.

« Variables that lead to numerically unstable pivots. When employing tearing, one runs the risk of causing
numerically unstable computations. This is difficult to predict, but experienced users may know that certain
variables should be selected for tearing to prevent instability, which can be achieved by marking them asinelim-
inable, which does not require a corresponding tearing residual to be chosen. Further details on manual tearing
is described in Section 6.5.4.4.

In our small example, the only thing we have to worry about is y1, which has an upper bound. To mark y1 as
ineliminable, we use the following code.

elimopts = ElimnationOptions()
elimopts['inelimnable'] = ['yl'] # List of variable nanes

Theelim_optsdictionary object isused to set any other elimination options, which are described in Section 6.5.4.5.
For now, we just enable the option to make a plot of the block-lower triangular (BLT) decomposition of the DAE
incidence matrix, which gives insight regarding the performed eliminations (see [Mag2016]).

elimopts['draw blt'] = True
elimopts['draw blt_strings'] = True

Now we are ready to symbolically transform the optimization problem.
op = BLTOpti m zati onProbl en(op, elimopts)
This prints the following simple problem statistics.

System has 5 al gebraic variables before elimnation and 4 after.
The three |argest BLT bl ocks have sizes 3, 1, and 1.

Since we enable the BLT drawing, we also get the following plot.

der(x1)
der(x2)

[ToNENR S M —
(Sq(y5)—X1) _ E > > >
(y4-sqrt(y5)) = @ | @

(((x1*y3)+y2)-sqrt(x1))-2) |= 0 () o

((((y1*y4) +sqrty3))x)yh) =u @@ @
(2 *y1)*y2)*y4)-sqrt(x1)) = o o0

der(x1) = x2 o
((der(x2)+y1)+y2)-y3) = u o000 ﬂ

-10 1 2 3 4 5 6 7
Figure 6.11 Simple example BLT decomposition.

The only variable we were able to eliminate was y4. For details on what all the colors mean in the figure, see
Section 6.5.4.3.

86

Dynamic Optimization in Python

6.5.4.3. The many colors of symbolic elimination

In the plots generated by enabling the option dr aw_bl t, linear (with respect to the block variables) incidences are
marked by green dots, and nonlinear incidences are marked by red dots. Thereisno distinction made between linear
and nonlinear incidences outside of the diagonal blocks. Hence, such incidences are marked by black dots. Torn
blocks are marked by red edges. Variables, and their respective matched equations, that have been user-specified
as actively bounded (and hence are not eliminated) are marked by orange edges. State variable derivatives (which
are not eliminated) and their respective matched equations are marked by blue edges. Blue edges are also used to
mark non-scalar blocks that have not been torn. Variable—equation pairs along the diagonal that are not sparsity
preserving are marked by yellow edges. The remaining variable—equation pairs along the diagonal are the ones
used for elimination, which are marked by green edges.

6.5.4.4. Tearing

By default, tearing is not used in the elimination. The use of tearing enablesthe elimination of variablesin agebraic
loops. In this example, we can also eliminate y2 through tearing. Tearing can either be done automatically or
manually. Manual tearing is performed on the Opt i i zat i onPr obl emobject, prior to symbolic transformation. To
eliminate y2, we select the other variables in the algebraic loop for y2—that is, y3 and y1—as tearing variables
asfollows.

op. get Vari abl e(' y1'). set Teari ng(True)
op. get Vari abl e(' y3'). set Teari ng(True)

We also have to select tearing residuals. Thisis less convenient, as there is no straightforward way to identify an
equation. We can either manually inspect the equations obtained from op. get DaeEquat i ons() , or search through
the string representations of all of them. We will adopt the second approach.

for eq in op_nanual . get DaeEquati ons():
eg_string = eq.getResidual ().get Representation()
if "yl)*y2)*y4)' in eq_string or 'yl*y4' in eq_string:
eq. set Teari ng(True)

Once the tearing selection is finished, the symbolic transformation can be performed as before by instantiating
BLTOpt i mi zati onProbl em

For this example, we can get the same result by automatic tearing, which is enabled during compilation. We pre-
viously used conpi | er _opti ons={}. By instead using

conpi l er _options = {'equation_sorting' : True, 'autonatic_tearing': True}

tearing will be performed automatically. This will mark the same variables and equations as tearing variables as
we just did manually. Hence, it may be a good idea to first perform tearing automatically and then make any
needed changes manually, rather than doing manual tearing from scratch. Automatic tearing will yield satisfactory
performance for most problems, so manual tearing is only recommended for experts. For this example, we can also
eliminate y1 through manual tearing, but since we have abound on y1, thisis not recommended anyway.

87

Dynamic Optimization in Python

6.5.4.5. Available options

The standard elimination optionsarelisted below. All of these have been explained in the above subsections, except
for the last two related to sparsity preservation. A higher density tolerance will allow for the elimination of more
algebraic variables, but the resulting DAE will be more dense. This parameter thus allows a trade-off between the
sparsity and dimension of the DAE, both of which affect the performance of the optimization.

Table 6.4 Standard options for the symboalic elimination.

Option Default Description
draw bl t False Whether to plot the BLT form.
draw bl t_strings False Whether to annotate plot of the BLT form with strings
for variables and equations.
tearing True Whether to tear algebraic loops.
i nel i ni nabl e 11 List of names of variables that should not be eliminat-

ed. Particularly useful for variables with bounds.

dense_neasure Imfi’ Density measure for controlling density in causal-
ized system. Possible values: ['Imfi’, 'Markowitz.
Markowitz uses the Markowitz criterion and Imfi uses
local minimum fill-in to estimate density.

dense_t ol 15 Tolerance for controlling density in causalized system.
Possible values: [-inf, inf]

The below table lists the experimental and debugging elimination options, which should not be used by the typical
user.

Table 6.5 Experimental and debugging options for the symbolic elimination.

Option Default Description

pl ots False Whether to plot intermediate results for matching and
component computation.

sol ve_bl ocks False Whether to factorize coefficient matrices in non-scalar,
linear blocks.

sol ve_torn_linear_bl ockkalse Whether to solve causalized equations in torn blocks,
rather than doing forward substitution as for nonlinear
blocks.

inline True Whether to inline function calls (such as creation of
linear systems).

l'i near _sol ver "symbolicqr" Which linear solver to use. See http://

casadi.sourceforge.net/api/html/d8/d6a/
classcasadi_1 1L inearSolver.html for possibilities

88

Dynamic Optimization in Python

Option Default Description
closed_form False Whether to create a closed form expression for residu-
als and solutions. Disables computations.
i nline_sol ved False Whether to inline solved expressionsin the closed
form expressions (only applicableif closed_form ==
True).

6.6. Derivative-Free Model Calibration of FMUs

Figure 6.12 The Furuta pendulum.

This tutorial demonstrates how to solve a model calibration problem using an algorithm that can be applied to
Functional Mock-up Units. The model to be calibrated is the Furuta pendulum shown in Figure 6.12. The Furuta
pendulum consists of an arm rotating in the horizontal plane and a pendulum which is free to rotate in the verti-
cal plane. The construction has two degrees of freedom, the angle of the arm, ¢, and the angle of the pendulum,
6. Copy the file $IJMODELI CA_HOVE/ Pyt hon/ pyj mi / exanpl es/ fi | es/ FMJs/ Fur ut a. f mu to your working direc-
tory. Note that the Furuta.fmu file is currently only supported on Windows. Measurement data for ¢ and 0
is available in the file $JMODELI CA_HOVE/ Pyt hon/ pyj mi / exanpl es/ fi | es/ Fur ut aDat a. mat . Copy this file to
your working directory as well. These measurements will be used for the calibration. Open a text file, name it
furuta_par_est. py and enter the following imports:

fromscipy.io.matl ab. m o i nport | oadmat
import natplotlib.pyplot as plt

import nunpy as N

frompyfm inport |oad_fnu
frompyjm.optimzation inmport dfo

89

Dynamic Optimization in Python

Then, enter code for opening the data file and extracting the measurement time series:

Load neasurenent data fromfile

data = | oadmat (' Furut aDat a. mat ' , appendnat =Fal se)
Extract data series

t_nmeas = data['tine'][:, 0]

phi _meas = data['phi'][:, 0]

theta_neas = data['theta'][:,0]

Now, plot the measurements;

Pl ot neasurenents

plt.figure (1)

plt.clf()

plt.subplot(2,1,1)

plt.plot(t_neas,theta_neas, | abel =" Measurenents')
plt.title('theta [rad]"')

plt.l egend(l oc=1)

plt.grid ()

pl t.subplot (2,1, 2)

plt.plot(t_neas, phi _neas, | abel = Measurenents')
plt.title('phi [rad]"')

plt.l egend(l oc=1)

plt.grid ()

plt.show ()

This code should generate Figure 6.13 showing the measurements of 8 and ¢.

theta [rad]

— Measurements

0 i i i

0 5 10 15 .20 30 35 40
phi[rad]
0.1 .

Figure 6.13 Measurements of 6 and ¢ for the Furuta pendulum.

To investigate the accuracy of the nominal parameter values in the model, we shall now simulate the model:

90

Dynamic Optimization in Python

Load nodel

model = | oad_frmu("Furuta.fm")

Sinul ate nodel response with nom nal paraneters
res = nodel .simulate(start_tinme=0.,final_tinme=40)
Load simulation result

phi _sim = res['armloi nt. phi']

theta_sim= res[' pendul umJoi nt. phi ']
t_sim=res['tine']

Then, we plot the simulation result:

Plot sinmulation result

plt.figure (1)

plt.subplot(2,1,1)

plt.plot(t_simtheta_sim'--',label="Sinulation nom nal paraneters')
plt.l egend(l oc=1)

pl t.subplot (2,1, 2)

plt.plot(t_simphi_sim'--"',label="Sinulation nom nal paraneters')
plt.xlabel ("t [s]")

plt. | egend(l oc=1)

pl t.show ()

Figure 6.14 shows the simulation result together with the measurements.

theta [rad]
6 T

T T T
— Measurements
5 i d N i S = -+ Simulation nominal parameters

20
phi[rad]

T T
— Measurements
=+ Simulation nominal parameters

i
0 5 10 15 20 25 30 35 40
t [s]

Figure 6.14 Measurements and model simulation result for ¢ and 6 when using nominal parameter values in the
Furuta pendulum model.

As can be seen, the simulation result does not quite agree with the measurements. We shall now attempt to calibrate
the model by estimating the two following model parameters:

91

Dynamic Optimization in Python

* carm: &m friction coefficient (nominal value 0.012)

* Cpend: Pendulum friction coefficient (nominal value 0.002)

The calibration will be performed using the Nelder-Mead simplex optimization algorithm. The objective function,
i.e. the function to be minimized, is defined as:

M M

FE = (¢) — ™ @)+ Y (9™ (,x) — 9= (1))’

=1 =1

T
wheret,, i = 1,2,...M, are the measurement time points and [Carm Cpend]" isthe parameter vector. ™eas and 6™

are the measurements of ¢ and 0, respectively, and ¢sim and 6°'™ are the corresponding simulation results. Now,
add code defining a starting point for the algorithm (use the nominal parameter values) as well aslower and upper
bounds for the parameters:

Choose starting point

x0 = N array([0.012, 0. 002])*1e3

Choose | ower and upper bounds (optional)
Ib = N zeros (2)

ub = (x0 + le-2)*1e3

Notethat the val ues are scaled with afactor 10°. Thisisdoneto get amore appropriate variable sizefor thealgorithm
to work with. After the optimization is done, the obtained result is scaled back again. In this calibration problem,
we shall use multiprocessing, i.e., parallel execution of multiple processes. All objective function evaluationsin
the optimization algorithm will be performed in separate processes in order to save memory and time. To be able
to do this we need to define the objective function in a separate Python file and provide the optimization a gorithm
with the file name. Open a new text file, nameit f ur ut a_cost . py and enter the following imports:

frompyfm inmport |oad_fnmu
frompyjm.optimzation inport dfo
from scipy.io.matlab. m o i nport | oadmat
import nunpy as N

Then, enter code for opening the data file and extracting the measurement time series:

Load neasurenent data fromfile

data = | oadmat (' Furut aDat a. mat ' , appendnat =Fal se)
Extract data series

t_nmeas = data['tine'][:, 0]

phi _meas = data['phi'][:, 0]

theta_neas = data['theta'][:, 0]

Next, define the objective function, it is important that the objective function has the same name as thefileit is
defined in (except for . py):

92

Dynamic Optimization in Python

Define the objective function
def furuta_cost(x):
Scal e down the inputs x since they are scal ed up
versions of the paraneters (x = 1e3*[parantl, paran?])
arnfrictionCoefficient = x[0]/1e3
pendul unfrictionCoefficient = x[1]/1e3
Load nodel
nodel = load_fru('../Furuta.fm')
Set new paraneter values into the nodel
nodel . set (‘arnfriction',arnfrictionCoefficient)
nodel . set (' pendul unfriction', pendul unfricti onCoef fi ci ent)
Simul ate nodel response with new paraneter val ues
res = nodel .simulate(start_tine=0.,final _tinme=40)
Load sinulation result
phi _sim = res['armloi nt. phi"']
theta_sim= res[' pendul umJoi nt. phi']
t_ sim=res['tine']
Eval uate the objective function
y_meas = N. vstack((phi _neas ,theta_neas))
y_sim = N.vstack((phi _simtheta_sin))
obj = dfo.quad_err(t_neas,y_neas,t_simy_sin
return obj

This function will later be evaluated in temporary sub-directories to your working directory which is why the
string ' .. /' is added to the FMU name, it means that the FMU is located in the parent directory. The Python
function df 0. quad_er r evaluates the objective function. Now we can finally perform the actual calibration. Solve
the optimization problem by calling the Python function df o. f mi n in the file named f ur ut a_par _est . py:

Sol ve the probl em using the Nel der-Mead sinplex algorithm
x_opt,f_opt,nbr _iters,nbr_fevals,solve tine = dfo.fm n("furuta_cost. py",
xst art =x0, | b=l b, ub=ub, al g=1, nbr _cores=4, x_tol =1le- 3, f _tol =1e-2)

The input argument al g specifies which algorithm to be used, al g=1 means that the Nelder-Mead simplex algo-
rithm is used. The number of processor cores (nbr _cor es) on the computer used must also be provided when
multiprocessing is applied. Now print the optimal parameter values and the optimal function value:

Optimal point (don't forget to scal e down)

[arnfrictionCoefficient_opt, pendul unfrictionCoefficient_opt] = x_opt/1le3
Print optinmal paraneter val ues and optimal function val ue

print 'Optinmal paraneter val ues:'

print "armfriction coeff ="' + str(arnfrictionCoefficient_opt)
print 'pendul umfriction coeff ="' + str(pendul unfrictionCoefficient_opt)
print 'Optinmal function value: ' + str(f_opt)

This should give something like the following printout:

Opti mal paraneter val ues:

armfriction coeff = 0.00997223923413
pendul um friction coeff = 0.000994473020199
Optimal function value: 1.09943830585

93

Dynamic Optimization in Python

Then, we set the optimized parameter values into the model and simulate it:

Load node

nodel = | oad_f mu(" Furuta.fnm")

Set optimal paraneter values into the node

nodel . set (' arnfriction', arnfricti onCoefficient_opt)
nodel . set (' pendul unfriction', pendul unfri cti onCoef fi ci ent _opt)
Sinmul ate nodel response with opti nmal paraneter val ues
res = nodel .sinmulate(start_tinme=0.,final_tinme=40)

Load simul ation result

phi _opt = res['armloint. phi']

theta_opt = res[' pendul umloi nt. phi']

t_opt =res['tine']

Finally, we plot the simulation result:

Plot sinmulation result

plt.figure (1)

plt.subplot(2,1,1)

plt.plot(t_opt,theta opt,'-."',linew dth=3
| abel =" Sinul ati on optimal paraneters')
plt. Il egend(l oc=1)

plt.subplot (2,1, 2)
plt.plot(t_opt,phi_opt,'-.",linew dth=3
| abel =" Simul ati on optimal paraneters')
plt. Il egend(l oc=1)

plt.show ()

This should generate the Figure 6.15. As can be seen, the agreement between the measurements and the simulation
result has improved considerably. The model has been successfully calibrated.

94

Dynamic Optimization in Python

theta [rad]

6 T T
— Measurements
5r = -+ Simulation nominal parameters 4
= Simulation optimal parameters
3
2
1
0 i i i i i i
0 5 10 1 .20 25 30 35 40
ph|2[rad]
0.1 T T T T
0.0 — Measurements (|
’ =+ Simulation nominal parameters
—01 = Simulation optimal parameters 1
-0.2 T — —
—0.31
—0.4
—0.5f
_06 L
-0.7f
—0.8 i i i i i i i
0 5 10 15 20 25 30 35 40

t [s]

Figure 6.15 Measurements and model simulation results for ¢ and 6 with nominal and optimal parametersin the
model of the Furuta pendulum.

95

Chapter 7. Graphical User Interface
for Visualization of Results

7.1. Plot GUI

JModelica.org comes with agraphical user interface (GUI) for displaying simulation and / or optimization results.
The GUI supports result files generated by IModelica.org and Dymola (both binary and textual formats).

The GUI islocated in the module (pyj mi / pyf ni). common. pl otti ng. pl ot _gui and can be started by Windows
users by selecting the shortcut located in the start-menu under IModelica.org. The GUI can also be started by typing
the following commandsin a Python shell:

from pyj m .comon. plotting inport plot_gui # or pyfm .comon.plotting inport plot_gui
pl ot _gui.start GU ()

Note that the GUI requires the Python package wxPython which is installed by default in the Python version that
comes with IModelica.org.

| IModelica.org Plot GUI ‘ = | B ||

File Edit View Help

Plot1 ¢

2.8

2.6 |

2.4

2.2

2.0 I

Filter 18
7] Parameters | Constants I

V| Time-Varying =50 0 50 100

Figure 7.1 Overview of IModelica.org Plot GUI

7.1.1. Introduction

An overview of the GUI is shown in Figure 7.1. As can be seen, the plot figures are located to the right and
can contain multiple figures in various configurations. The left is dedicated to show the loaded result file(s) and
corresponding variables together with options for filtering time-varying variables and parameters/constants.

96

http://www.wxpython.org/

Graphical User Interface
for Visualization of Results

Loading aresult file is done using the Fi | e menu selection open which opens a file dialog where either textual
(-txt) results or binary (.mat) results can be chosen. The result is then loaded into a tree structure which enables
the user to easily browse between components in a model, see Figure 7.2 . Multiple results can be loaded either
simultaneously or separately by using the Fi | e menu option pen repeatedly.

1 IModelica.org P\otG_ - C="roT X

File Edit View Help

(=) CombinedCyde_Optimization_Simulators_C || Plot1
firstOrder
- load_S
[pi 1.0
[T height
[7] duration
[offset
[startTime 0.8
k1
Fk2
[activation_1
D activation_2
Oy
plant
[7] time 0.4 |

0.6

4| m * 0.2
Filter

Parameters | Constants l

0.
Time-Varying % 0 0.2 0.4 0.6 0.8 1.0
Time [s]

Figure 7.2 A result file has been loaded.

Displaying trajectoriesis done by simply checking the box associated with the variable of interest, see Figure 7.3.
Removing atrgjectory follows the same principle.

= o
5 IModelica.org P\otGm -

File Edit View Help

=)-CombinedCyde_Optimization_smulator =] | | Plot 1 3¢
firstOrder

- load_S
E pi 1.06
[T offset 1.04
[startTime
k1
Lk 1.02
[T activation_1
D activation_2
¥ 1.00
plant
[time
0.98
E
4| I r
0.96
Filter
Parameters Constants
0.9
Time-Varying %}.O 0.2 0.4 0.6 0.8 1.0

Time [s]

Figure 7.3 Plotting atrajectory.

97

Graphical User Interface
for Visualization of Results

A result can also be removed from the tree view by selecting an item in the tree and by pressing the delete key.

7.1.2. Edit Options

The GUI alows arange of options, see Figure 7.4, related to how the trajectories are displayed such asline width,
color and draw style. Information about aplot can in addition be defined by setting titles and labels. Optionsrelated
to the figure can be found under the Edi t menu as well as adding more plot figures.

i IModelica.org P\otGU‘ - | |l o
T
File View Help
E Add Plot tor = || Plot1 x

g
q Axis { Labels
Lines / Legends 1.06

E — load_S.
[7] duration
[T offset 1.04
[startTime
Bk
ka2 1.02

D activation_1
D activation_2

¥ 1.00
plant
[time
0.98
« i b
0.96
Filter
Parameters | Constants l
0.9
Time-Varying %.O 0.2 0.4 0.6 0.8 1.0

Time [s]

Figure 7.4 Figure Options.

Under Axi s/ Label s, see Figure 7.5, options such as defining titles and labels in both X and Y direction can be
found together with axis options.

98

Graphical User Interface
for Visualization of Results

11 IModelica.arg P\otm - (- [o [
——
File Edit Wiew Help . -
_ .
= CombinedCyde_Optimization_Simulator = | | plot 1 | s and Labels = L
firstOrder y
& load_S Title
e 1.06
[7] height H X-Axis oad S.y
[T duration Min - '
[7] offset 1.04
[startTime Max
mS! —
Bka 1.02]| tabel Time [s]
D activation_1
[actvason 2 see
y
1.00 -
plant ¥-Axis
[7] tme Min |
o33 Max
< [+ Label
: 0.96
Filtes
e o
Parameters / Constants ‘
0.3
Time-Varying 1 0.8 1.0

Figure 7.5 Figure Axis and Labels Options.

Under Li nes/ Legends, options for specifying specific line labels and line styles can be found, see Figure 7.6.
The top drop-down list contains all variables related to the highlighted figure and the following input fields down
to Legend are related to the chosen variable. The changes take effect after the button ok has been pressed. For
changing multiple lines in the same session, the Appl y button should be used.

17 IModelica.org P\Utm - - [o e
File Edit Wiew Help
[~ CombinedCyde_Optimization_Simulator Plot1
firstOrder - N
= -load_5 Lines and Legends [
Do 1.06
[neight E : S
[T duration [ioad 5.y : v] =Y '
[offeet 104H | Label
g load_S.
[T startTime =
Mk m Line
Bka2 1.02
[activation_1 o Solid
D activation_2 Width 10
v 1.00
[7] tme
: s
LI F—TT— 3 -
] 096 o=
Parameters / Canstants ‘
0944
Time-Varyi %} 10
ST e g | e
-—

Figure 7.6 Figure Lines and Legends options.

Additional figures can be added from the Add PI ot command in the Edi t menu. In Figure 7.7 an additional figure
have been added.

99

Graphical User Interface
for Visualization of Results

- ==
1 | IModelica.org P\utGLI[‘ . [|

File Edit View Help

[} CombinedCyde_Optimization_Simulator + Plot1 | Plot2
firstOrder
{=h-load_S
e 1.06

2 height _

[T duration
[7] offset 1.04
[startTime

mS! —

Bk2

D activation_1 102
D activation_2

m

¥ 1.00
plant
[7] tme
0.98
4| 1 3
0.96
Filter
Parameters / Constants
0.9
Time-Varying ‘b.U 0.2 0.4 0.6 0.8 10

Time [s]

Figure 7.7 An additional plot has been added.

Thefigures can be positioned by choosing afigure tab and moving it to one of the borders of the GUI. In Figure 7.8
"Plot 1" have been dragged to the left side of the figure and a highlighted area has emerged which shows where
"Plot 1" will be positioned. In Figure 7.9 the result is shown.

- ==
1 | IModelica.org P\utGLI[‘ . [|

File Edit View Help

=)-CombinedCyde_Cptimization_Simulator *

firstOrder

{=h-load_S
Do 1.06
] height
[T duration
[7] offset 1.04
[startTime
mS! —
Bka 1.02
D activation_1
D activation_2

m
=3
[

| (=5
L
-~

y -
plant
[7] tme
0.98
4| 1 3

0.96

Filter

Parameters / Constants
0.9:

Time-Varying ‘b.ﬂ 0.2 0.4 0.6 0.8 10

Time [s]

Figure 7.8 Moving Plot Figure.

100

Graphical User Interface
for Visualization of Results

£ modsiceors o | S
Bl T

File Edit View Help I
[z)-CombinedCyde_Optimization_Simulator Plot1 Plot 2 I
firstOrder
iz load_5
: pi .06 1.0
| duration -
offset .04
startTime 0.8
k_1
k2
' activation_1 02 0.6
activation_2 .
[— 00
plant
1] timee 0.4
.98
Rl —— , 0.2
.96
Filter
Parameters / Constants
[¥] Time-varyi '9‘60 02 04 06 08 10 D'%O 02 04 06 08 10
Time [s] Time [s]

Figure 7.9 GUI after moving the plot window.

If we are to add more figures, an increasingly complex figure layout can be created as is shown in Figure 7.10
where figures also have been dragged to other figure headers.

£ modsiceors o | S
Bl T

File Edit View Help I
[=)+CombinedCyde_Optimization_Simulator * Plot1 | Plot5 Flot2 | Floté |
firstOrder
1.0
+h-load_S
T = 0.8
pi 06 1.0
1] height 0'4
duration 0'2
] offset .
startTime 08555 Az ne nm in |08
Flot 4
1.0
0.8 0.6
0.6
0.4
02 0.4
00 A5 Az nr nm Tn
& Flot3 Plot 7 x
O | 100 ey 02
Filter 0.8
0.6
Parameters / Constants 0.4
. 0.
Time-Varying 0.2 %.O 02 04 06 08 10
D'Q\n N2> nNna _nfA_N8_10N Time [s]

Figure 7.10 Complex Figure Layout.

101

Graphical User Interface
for Visualization of Results

7.1.3. View Options

Options for interacting with a figure and changing the display can be found under the vi ew menu. The options
are to show/hide a grid, either to use the mouse to move the plot or to use the mouse for zooming and finally to
resize the plot to fit the selected variables.

i IModelica.org P\otGUI' - [| e
File Edit Help

(=) Combir Grid
firs
=-loal © | Move

ulator = Plot1

1.06

Zoom

m
=)
Q

Iﬂ.
LA
~

Resize

offset
[startTime
Bk
ka2 1.02
D activation_1
D activation_2
¥ 1.00
plant

[time
0.98

< [+

1.04

0.96
Filter

Parameters | Constants |

0.9
Time-Varying %} 0 0.2 0.4 0.6 0.8 1.0
Time [s]

Figure 7.11 Figure View Options.

Moving afigure with the nove optionis performed by simply pressing the left mouse button and while still holding
down the button, dragging the plot to the area of interest. A zoom operation is performed in asimilar fashion.

7.1.4. Example

Figure 7.12 shows an example of how the GUI can be used to plot four different plots with different labels. Some
of the lines have also been modified in width and in line style. A grid is also shown.

102

Graphical User Interface
for Visualization of Results

i JModelica.org Plot

File Edit View Help
~LeadTransport_result. tet il Plot 1 Plot 3
50 States 10 Sensitivity in y2 |
-- der(y3) Eo : — dy2/dpl
40 f- — der(y2) 08 oot dy2/dp2
— der(yl) — dy2/dp3
30 — 0.6 ——
20 0.4
10 0.2
0 50 100 150 200 250 300 350 400 00556100 150 200 250 300 350 400
[Ptz | || Plota x|
10 Sensitivity in y1 10 Sensitivity in y3
— dyl/dpl — dy3/dpl
08 i | — dylidp2 08| it wn dy3/dp2
— dyl/dp3 : : — dy3/dp3
0.6 0.6 |
.| oa 04l
Filter 0.2 02t
Parameters / Constants -
Time-Varying 0.0 1) S N S S
0 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

Figure 7.12 Multiple figure example.

103

Chapter 8. The Optimica Language
Extension

In this chapter, the Optimica extension will be presented and informally defined. The Optimica extension in de-
scribed in detail in [Jak2008a], where additional motivations for introducing Optimica can be found. The presen-
tation will be made using the following dynamic optimization problem, based on a double integrator system, as
an example:

mint
ue)

subject to the dynamic constraint
x(t)=v(t) , x(t)=0
v(t)=u(t) , v(t)=0

and

v(tr)=0 x(tr)=1
1<u(t)<-1 v(t)<05

In this problem, the final time, tf, isfree, and the objective is thus to minimize the time it takes to transfer the state
of the double integrator from the point (0,0) to (1,0), while respecting bounds on the velocity v(t) and the input
u(t). A Modelicamodel for the double integrator systemis given by:

nodel Doubl el nt egr at or
Real x(start=0);
Real v(start=0);
i nput Real u;

equati on
der (x) =v;
der (v) =u;

end Doubl el nt egrator;

In summary, the Optimica extension consists of the following elements:

* A new specialized class: opt i m zati on

* New attributes for the built-in type Real: free andi ni ti al Guess

* A new function for accessing the value of avariable at a specified time instant

* Class attributes for the specialized classopt i mi zat i on: obj ecti ve, start Time, final Time andstatic

104

The Optimica Language Extension

* A new section: constrai nt

* Inequality constraints

8.1. A new specialized class: optimization

A new specialized class, called opti mi zat i on, in which the proposed Optimica-specific constructs are valid is
supported by Optimica. This approach is consistent with the Modelica language, since there are aready severa
other specialized classes, e.g., record, functi on and nodel . By introducing a new specialized class, it aso be-
comes straightforward to check the validity of aprogram, since the Optimica-specific constructs are only valid in-
sideanopt i ni zat i on class. Theopt i ni zat i on class corresponds to an optimization problem, static or dynamic,
as specified above. Apart from the Optimica-specific constructs, an opt i mi zat i on class can also contain compo-
nent and variable declarations, local classes, and equations.

It is not possible to declare components from opt i mi zat i on classes in the current version of Optimica. Rather,
the underlying assumption is that an opt i ni zat i on class defines an optimization problem, that is solved off-
line. An interesting extension would, however, beto allow for opt i i zat i on classesto be instantiated. With this
extension, it would be possi bl e to sol ve optimi zation problems, on-line, during simulation. A particularly interesting
application of thisfeature is model predictive control, which is a control strategy that involves on-line solution of
optimization problems during execution.

As a starting-point for the formulation of the optimization problem consider the opt i ni zat i on class:

optim zation DI M nTi ne
Doubl el nt egrator di;
input Real u = di.u;
end DI M nTi ne;

This class contains only one component representing the dynamic system model, but will be extended in the fol-
lowing to incorporate al so the other elements of the optimization problem.

8.2. Attributes for the built in class Real

In order to superimpose information on variable declarations, two new attributes are introduced for the built-in type
Real. Firstly, it should be possible to specify that a variable, or parameter, is free in the optimization. Modelica
parameters are normally considered to be fixed after the initialization step, but in the case of optimization, some
parameters may rather be considered to befree. In optimal control formulations, the control inputs should be marked
as free, to indicate that they are indeed optimization variables. For these reasons, a new attribute for the built-in
type Redl, f r ee, of boolean typeisintroduced. By default, this attribute isset tof al se.

Secondly, an attribute, i ni ti al Guess, isintroduced to enable the user to provide an initial guessfor variables and
parameters. In the case of free optimization parameters, the i ni ti al Guess attribute provides an initial guess to
the optimization algorithm for the corresponding parameter. In the case of variables, thei ni ti al Guess attribute
is used to provide the numerical solver with an initial guessfor the entire optimization interval. Thisis particularly

105

The Optimica Language Extension

important if a simultaneous or multiple-shooting algorithm is used, since these algorithms introduce optimization
variables corresponding to the values of variables at discrete points over theinterval. Note that such initial guesses
may be needed both for control and state variables. For such variables, however, the proposed strategy for providing
initial guesses may sometimes be inadequate. In some cases, a better solution is to use simulation datato initialize
the optimization problem. This approach is also supported by the Optimica compiler. In the double integrator
example, the control variable u is a free optimization variable, and accordingly, the f r ee attribute isset to t r ue.
Also, thei ni ti al Guess attributeis set to 0.0.

optim zation DI M nTi nme
Doubl el nt egrat or di (u(free=true,
initial Guess=0.0));
input Real u = di.u;
end DI M nTi ne;

8.3. A Function for accessing instant values of a vari-
able

An important component of some dynamic optimization problems, in particular parameter estimation problems
where measurement dataisavailable, isvariable accessat discretetimeinstants. For example, if ameasurement data
value, y;, has been abtained at timet;, it may be desirable to penalize the deviation between y; and a corresponding
variableinthe model, evaluated at thetimeinstant tj. In Modelica, it isnot possible to accessthe value of avariable
at aparticular time instant in a natural way, and a new construct therefore has to be introduced.

All variablesin Modelicaarefunctions of time. The variability of variables may be different-some are continuously
changing, whereas others can change value only at discrete timeinstants, and yet others are constant. Nevertheless,
the value of a Modelica variable is defined for all time instants within the simulation, or optimization, interval.
The time argument of variables are not written explicitly in Modelica, however. One option for enabling access
to variable values at specified time instants is therefore to associate an implicitly defined function with avariable
declaration. This function can then be invoked by the standard Modelica syntax for function cals, y(t _i). The
name of the function isidentical to the name of the variable, and it has one argument; the time instant at which the
variableisevauated. Thissyntax isalso very natural sinceit corresponds precisely to the mathematical notation of
afunction. Notethat the proposed syntax y(t _i) makestheinterpretation of such an expression context dependent.
In order for this construct to bevalid in standard Modelica, y must refer to afunction declaration. With the proposed
extension, y may refer either to a function declaration or a variable declaration. A compiler therefore needs to
classify an expression y(t _i) based on the context, i.e., what function and variable declarations are visible. This
feature of Optimicais used in the constraint section of the double integrator example, and is described below.

8.4. Class attributes

In the optimization formulation above, there are elements that occur only once, i.e., the cost function and the opti-
mization interval. These elements are intrinsic properties of the respective optimization formulations, and should
be specified, once, by the user. In this respect the cost function and optimization interval differ from, for example,
constraints, since the user may specify zero, one or more of the latter.

106

The Optimica Language Extension

In order to encode these elements, class attributes are introduced. A class attribute is an intrinsic element of a
specialized class, and may be modified in a class declaration without the need to explicitly extend from a built-
in class. In the Optimica extension, four class attributes are introduced for the specialized class opt i ni zat i on.
These are obj ect i ve, which defines the cost function, st art Ti me, which defines the start of the optimization
interval, f i nal Ti me, which defines the end of the optimization interval, and st at i ¢, which indicates whether the
class defines a static or dynamic optimization problem. The proposed syntax for class attributes is shown in the
following opt i mi zat i on class:

optim zation DIM nTine (
obj ecti ve=fi nal Ti ne,
start Ti ne=0,
final Tine(free=true,initial Guess=1))
Doubl el nt egrat or di (u(free=true,
initial Guess=0.0));
input Real u = di.u;
end DI M nTi ne;

The default value of the class attribute st at i ¢ isf al se, and accordingly, it does not have to be set in thiscase. In
essence, the keyword ext ends and the reference to the built-in class have been eliminated, and the modification
construct is instead given directly after the name of the class itself. The class attributes may be accessed and
modified in the same way asif they were inherited.

8.5. Constraints

Constraints are similar to equations, and in fact, a path equality constraint is equivalent to a Modelica equation.
But in addition, inequality constraints, aswell as point equality and inequality constraints should be supported. Itis
therefore natural to have a separation between equations and constraints. In Modelica, initial equations, equations,
and algorithms are specified in separate sections, within a class body. A reasonable aternative for specifying
constraintsisthereforeto introduce anew kind of section, const r ai nt . Constraint sectionsare only allowed inside
anoptim zati on class, and may contain equality, inequality as well as point constraints. In the double integrator
example, there are several constraints. Apart from the constraints specifying bounds on the control input u and
the velocity v, there are also terminal constraints. The latter are conveniently expressed using the mechanism for
accessing the value of avariable at a particular time instant; di . x(fi nal Ti me) =1 and di . v(fi nal Ti me) =0. In
addition, bounds may haveto be specified for thef i nal Ti me classattribute. The resulting optimization formulation
may now be written:

optim zation DIMnTine (
obj ecti ve=fi nal Ti ne,
start Ti me=0,
final Time(free=true,initial Guess=1))
Doubl el nt egrat or di (u(free=true,
initial Guess=0.0));
input Real u = di.u;
constrai nt
final Ti ne>=0. 5;
final Ti me<=10;

107

The Optimica Language Extension

di . x(final Ti me)=1;

di . v(final Ti me)=0;

di . v<=0. 5;

di.u>=-1; di.u<=1;
end DI M nTi ne;

The Optimica specification can be translated into executable format and solved by a numerical solver, yielding
theresult seenin Figure 8.1.

1.0

— X
— v]
O R S : e SRS

0.8

08 b

0.2f s L

0'%.0 0.5 1.0 15 2.0 2.5

1.0 e E T ,,,‘,El,

R : ISR RS

R e E—

— 0.5 : . [

N SR o ‘ ; S
0.0 0.5 1.0 15 2.0 2.5

Figure 8.1 Optimization result

108

Chapter 9. Limitations

This page lists the current limitations of the IModelica.org platform.

The Modelica compliance of the front-end is limited; the following features are currently not supported:

The support for String variables and parametersis limited.
Support for partial function callsis limited.

The following built-in functions are not supported:

term nal ()

The following built-in functions are only supported in FMUs:

ceil (x) i nt eger (x) reinit(x, expr)

div(x,y) nmod(x, y) sanpl e(start,interval)
edge(b) pre(y) sem Linear(...)

fl oor (x) rem(x,y) sign(v)

initial () del ay(...) spatial Distribution(...)

The following operators are only partially supported:

honot opy()

The following annotations are not supported:

version arraylLayout obsol ete
uses Hi deResul t unassi gnedMessage
i nverse absol ut eVal ue

The following annotations are limited:

* ThezeroDerivati ve annotation is treated the same as the noDer i vat i ve annotation.

Thereislimited support for using arrays in record arrays.

No support for non-parameter array size declarations. This means that all array size declarations must be of

constant or parameter variability.

109

Limitations

 Index reduction fails in some complex cases. It is possible to work around this by setting the st at eSel ect
attribute manually.

In the Optimica front-end the following constructs are not supported:
» Annotations for transcription information.
The following limitations apply to optimization using CasADi-based collocation with IModelica.org:

 Incomplete support for the | nt eger and Bool ean types: To the extent that they are supported, they are treated
more or lesslikereals.

» No support for St ri ng and enuner at i on types.
« Attributes with any name can be set on any type of variable.

 The property of whether an optimization problem has free or fixed time horizon cannot be changed after com-
pilation.

The following limitations apply to FMUs compiled with IModelica.org:
 Setting string parameters and inputsis not supported.

» The dependenciesKind attribute in the XML file for FMU 2.0 is not generated.
* Directional derivatives are known to have limitations in some cases.

» Asynchronous ssimulation is not supported.

FMU states (set, get andseri al i ze) are not supported.

110

Appendix A. Compiler options

A.l. List of options that can be set in compiler

Table A.1 Compiler options

Option

Option type/
Default value

Description

aut omatic_tearing

bool ean /true

If enabled, then automatic tearing of equation systemsis
performed.

c_conpil er

string/"' gcc'

The C compiler to use to compile generated C code.

check_i nactive_ contition-

al s

bool ean / fal se

If enabled, check for errorsin inactive conditional com-
ponents when compiling. When using check mode, thisis
aways done.

component _nanmes_i n_errors

bool ean /true

If enabled, the compiler will include the name of the
component where the error was found, if applicable.

convert_free_dependent _
paraneters_to_al gebraics

bool ean /true

If enabled, then free dependent parameters are converted
to algebraic variables.

copy_source_files_to_fru

bool ean /fal se

If enabled, the generated source files will be copied to the
FMU.

di vide_by_vars_in_tearing

bool ean / fal se

If enabled, alessrestrictive strategy is used for solving
equations in the tearing algorithm. Specifically, division
by parameters and variablesis permitted, by default no
such divisions are made during tearing.

enabl e_bl ock_function_ ex-

traction

bool ean / fal se

Looks for function callsin blocks. If afunction call ina
block doesn't depend on the block in question, it is ex-
tracted from the block.

event _out put _vars

bool ean / f al se

If enabled, output variables are generated for each gener-
ated event.

ext ernal _constant _ eval ua-

tion

i nt eger /5000

Time limit (ms) when evaluating constant calls to exter-
nal functions during compilation. O indicates no evalua-
tion. -1 indicates no time limit.

filter_warnings

string/""

A comma separated list of warning identifiers that should
be omitted from the logs.

gener at e_bl ock_j acobi an

bool ean /f al se

If enabled, then code for computing block Jacobiansis
generated. If blocks are needed to compute ODE jaco-
bians they will be generated anyway

111

Compiler options

Option

Option type/
Default value

Description

gener at e_dae_j acobi an

bool ean /fal se

If enabled, then code for computing DAE Jacobians are
generated.

generate_htnm _di agnostics

bool ean /fal se

If enabled, model diagnostics are generated in HTML
format. This includes the flattened model, connection
sets, alias setsand BLT form.

generate_nof _files

bool ean / f al se

If enabled, then flat model before and after transforma-
tions will be generated.

gener at e_ode_j acobi an

bool ean / fal se

If enabled, then code for computing ODE Jacobians are
generated.

generate_only initial _ sys-

tem

bool ean /fal se

If enabled, then only theinitial equation system will be
generated.

hal t _on_war ni ng

bool ean /f al se

If enabled, compilation warnings will cause compilation
to abort.

i ndex_reduction

bool ean /true

If enabled, then index reduction is performed for high-in-
dex systems.

init_nonlinear_sol ver

string /" kin-
sol*

Decides which nonlinear equation solver to use in the ini-
tial system. Alternatives are 'kinsol or ' ni npack’ .

nonl i near _sol ver

string/"'kin-
sol '

Decides which nonlinear equation solver to use. Alterna-
tivesare 'kinsol or ' mi npack' .

rel ational _tine_events

bool ean /true

If enabled, then relational operators are allowed to gener-
ate time events.

state_initial_equations

bool ean / f al se

If enabled, the compiler ignoresinitial equationsin the
model and adds parameters for controlling intitial values
of states.Default ist al se.

state_start_val ues_fi xed

bool ean / fal se

If enabled, then initial equations are generated automat-
ically for differentiated variables even though the fixed
attribute is equal to fixed. Setting thisoptiontotrue is,
however, often practical in optimization problems.

tearing_division_tol erance

real /1.0E-10

The minimum allowed size for adivisior constant when
performing tearing.

al | ow_non_scal ar _nested_
bl ocks

bool ean /true

If disabled, an error is given if there are nested blocks
which are non-scalar.

112

Compiler options

Option

Option type/
Default value

Description

automatic_add_initial _
equati ons

bool ean /true

If enabled, then additional initial equations are added to
the model based equation matching. Initial equations are
added for states that are not matched to an equation.

cc_extra_flags

string/': Q1

Optimization level for c-code compilation

cc_extra_flags_applies_to

string/' func-
tions'

Parts of c-code to compile with extra compiler flags spec-
ified by cconpi | er _extra_fl ags

cc_split_element_limt

i nteger /1000

When generating code for large systems, the code is split
into multiple functions and files for performance reasons.
This option controls how many scalar e ements can be
evauated by afunction. Value less than 1 indicates no

split.

cc_split _function_limt

i nteger /20

When generating code for large systems, the code is split
into multiple functions and files for performance reasons.
This option controls how many functions can be generat-
edin afile. Value less than 1 indicates no split.

common_subexp_elim

bool ean /true

If enabled, the compiler performs a global analysis on the
equation system and extract identical function callsinto
common equations.

di agnostics_limt

i nt eger /500

This option specifies the equation system size at which
the compiler will start to reduce model diagnostics. This
option only affects diagnostic output that grows faster
than linear with the number of equations.

dynami c_st ates

bool ean /true

If enabled, dynamic states will be calculated and generat-
ed.

elimnate_alias_constants

bool ean /true

If enabled, then dlias constants are eliminated from the
model.

elimnate_alias_paraneters

bool ean /fal se

If enabled, then alias parameters are eliminated from the
model.

elinmnate_alias_variabl es

bool ean /true

If enabled, then alias variables are eliminated from the
model.

el imnate_|inear_equations

bool ean /true

If enabled, then equations with linear sub expressions are
substituted and eliminated.

enabl e_structural _ di agno-
sis

bool ean /true

If enabled, structural error diagnosis based on matching
of equations to variablesis used.

113

Compiler options

Option

Option type/
Default value

Description

enabl e_vari abl e_scal i ng

bool ean /fal se

If enabled, then the' noni nal ' attribute will be used to
scale variables in the model.

equation_sorting

bool ean /true

If enabled, then the equation system is separated into
minimal blocks that can be solved sequentially.

export_functions

bool ean / f al se

Export used Modelica functions to generated C code in a
manner that is compatible with the external C interfacein
the Modelica Language Specification.

export _functions_vba

bool ean / fal se

Create VBA-compatible wrappers for exported functions.
Requires the option export _f uncti ons.

expose_tenp_vars_in_fmu

bool ean /fal se

If enabled, then all temporary variables are exposed in
the FMU XML and accessable as ordinary variables

external _constant _
eval uati on_nmax_proc

i nteger /10

The maximum number of processes kept alive for eval-
uation of external functions during compilation. This
speeds up evaluation of functions using external objects
during compilation.If less than 1, no processes will be
kept alive, i.e. thisfeature isturned off.

function_inci dence_ conpu-
tation

string/' none'

Controls how matching algorithm computes incidences
for function call equations. Possible values: * none' ,
“all' . With' none' all outputs are assumed to depend
onall inputs. With* al I * the compiler analyses the func-
tion to determine dependencies.

honot opy_t ype

string/"' actu-
al'

Decides how homotopy expressions are interpreted dur-
ing compilation. Can be set to either * si nplified or
"actual ' which will compile the model using only the
simplified or actua expressions of the homotopy() opera-
tor.

ignore_within

bool ean /fal se

If enabled, ignore within clauses both when reading input
files and when error-checking.

i nline_functions

string/"triv-
ial’

Controlles what function calls areinlined. ' none' - no
function callsareinlined. ' trivial' -inlinefunction
callsthat will not increase the number of variablesin the
system.' al I'' -inlineall function calls that are possible.

| ocal _iteration_in_tearing

string /' of f'

This option controls whether equations can be solved |o-
cal intearing. Possible options are: * of f* , local itera-
tions are not used (default). * annot ati on' , only equa

114

Compiler options

Option Option type/ Description
Default value
tionsthat are annotated are candidates. ' al | ', al equa
tions are candidates.
max_n_proc integer /4 The maximum number of processes used during c-code

compilation.

normal i ze_mnimumtine_
pr obl ems

bool ean /true

If enabled, then minimum time optimal control problems
encoded in Optimica are converted to fixed interval prob-
lems by scaling of the derivative variables. Has no effect

for Modelicamodels.

propagat e_derivatives

bool ean /true

If enabled, the compiler will try to replace ordinary vari-
able references with derivative references. Thisis done
by first finding equations on the form x = der(y). If possi-
ble, uses of x will then be replaced with der(x).

variability_propagation

bool ean /true

If enabled, the compiler performs a global analysis on the
equation system and reduces variables to constants and
parameters where applicable.

wite_ iteration_variables_
to file

bool ean /f al se

If enabled, two text files containing one iteration variable
name per row iswritten to disk. The files contains the it-
eration variables for the DAE and the DAE initialization
system respectively. The files are output to the resource
directory of the FMU.

wite tearing_pairs_to_
file

bool ean / f al se

If enabled, two text files containing tearing pairs is writ-
ten to disk. The files contains the tearing pairs for the
DAE and the DAE initialization system respectively. The
files are output to the working directory.

al gorithnms_as_functions

bool ean /fal se

If enabled, convert algorithm sections to function calls.

di sabl e_snoot h_event s

bool ean / f al se

If enabled, no events will be generated for smooth opera-
tor if order equalsto zero.

event _i ndi cator_scal i ng

bool ean / f al se

If enabled, event indicators will be scaled with nominal
heuristics

gener ate_event _swi t ches

bool ean /true

If enabled, event generating expressions generates
switchesin the c-code. Setting thisoptiontof al se can
give unexpected results.

gener at e_spar se_bl ock_
j acobi an_t hreshol d

i nt eger /100

Threshold for when a sparse Jacobian should be generat-
ed. If the number of torn variablesis |ess than the thresh-
old adense Jacobian is generated.

115

Compiler options

Option Option type/ Description
Default value
cs_rel _tol real /1.0E-6 Tolerance for the adaptive solversin the Co-Simulation
case.
cs_sol ver integer /0 Specifies the internal solver used in Co-Simulation. O -
CVode, 1- Euler.
cs_step_size real /0.001 Step-size for the fixed-step solversin the Co-Simulation

case.

enf or ce_bounds

bool ean /true

If enabled, min/ max bounds on variables are enforced in
the equation blocks.

iteration_variable_scaling

integer /1

Scaling mode for the iteration variables in the equation
block solvers: 0 - no scaling, 1 - scaling based on nomi-
nals, 2 - utilize heuristic to guess nominal based on min,
max, start, etc.

| og_I evel

integer /3

Log level for the runtime: O - none, 1 - fatal error, 2 - er-
ror, 3-warning, 4 - info, 5 - verbose, 6 - debug.

nl e_acti ve_bounds_node

integer /0

Mode for how to handle active bounds: O - project New-
ton step at active bounds, 1 - use projected steepest de-
scent direction.

nl e_j acobi an_cal cul ati on_
node

integer /0

Mode for how to calculate the Jacobian: O - onesided dif-
ferences, 1 - central differences, 2 - central differences at
bound, 3 - central differences at bound and O, 4 - central
differencesin second Newton solve, 5 - central differ-
ences at bound in second Newton solve, 6 - central differ-
ences at bound and 0 in second Newton solve, 7 - central
differences at small residual, 8- calculate Jacobian exter-
nally, 9 - Jacobian compresssion.

nl e_jacobian_finite_
di fference_delta

real /1.49E-08

Deltato use when calculating finite difference Jacobians.

nl e_j acobi an_updat e_node

integer /2

Mode for how to update the Jacobian: O - full Jacobian, 1
- Broyden update, 2 - Reuse Jacobian.

nl e_sol ver_default _tol

real /1.0E-10

Default tolerance for the equation block solver.

nle solver _exit _criterion |integer /3 Exit criterion mode: O - step length and residual based, 1
- only step length based, 2 - only residual based, 3 - hy-
brid.

nl e_sol ver _nmax_residual _ real /1.0E10 Maximal scaling factor used by automatic and hybrid

scal i ng_factor

residual scaling agorithm.

116

Compiler options

Option

Option type/
Default value

Description

nl e_sol ver _m n_residual _
scal i ng_factor

real /1.0E-10

Minimal scaling factor used by automatic and hybrid
residual scaling agorithm.

rescal e_after_singular_jac

bool ean /true

If enabled, scaling will be updated after asingular ja-
cobian was detected (only active if automatic scaling is
used).

rescal e_each_step

bool ean / f al se

If enabled, scaling will be updated at every step (only ac-
tive if automatic scaling is used).

resi dual _equation_scaling

integer /1

Equations scaling mode in equation block solvers: O -
no scaling, 1 - automatic scaling, 2 - manual scaling, 3
- hybrid, 4- aggressive automatic scaling, 5 - automatic
rescaling at full Jacobian update

runtime_log_to file

bool ean /fal se

If enabled, log messages from the runtime are written di-
rectly to afile, besides passing it through the FMU inter-
face. Thelog file nameis generated based on the FMU
name.

use_Brent _in_1d

bool ean /true

If enabled, Brent search will be used to improve accuracy
in solution of 1D non-linear equations.

bl ock_sol ver _profiling

bool ean / f al se

If enabled, methods involved in solving an equation
block will be timed.

events_default_tol

real /1.0E-10

Default tolerance for the event iterations.

events_tol _factor

real /1.0E-4

Tolerance safety factor for the event indicators. Used
when external solver specifies relative tolerance.

nl e_brent _ignore_error

bool ean /fal se

If enabled, the Brent solver will ignore convergence fail-
ures.

nl e_sol ver _check_j ac_cond

bool ean /f al se

If enabled, the equation block solver computes and log
the jacobian condition number.

nl e_sol ver _max_iter

i nteger /100

Maximum number of iterations for the equation block
solver.

nl e_solver_nax_iter_no_ ja-

cobi an

i nteger /10

Maximum number of iterations without jacobian update.
Value 1 means an update in every iteration.

nl e_sol ver_nmin_tol

real /1.0E-12

Minimum tolerance for the equation block solver. Note
that, e.g. default Kinsol tolerance is machine precision
pwr 1/3, i.e. 1le-6.

117

Compiler options

Option Option type/ Description
Default value
nle_solver_regularization_ |real /-1.0 Tolerance for deciding when regularization should be ac-
tol erance tivated (i.e. when condition number > reg tol).
nle_solver_step_ limt_ fac- [real /10.0 Factor limiting the step-size taken by the nonlinear block
tor solver.
nl e_sol ver tol factor real /1.0E-4 Tolerance safety factor for the equation block solver.

Used when external solver specifies relative tolerance.

nl e_sol ver _use_l ast _
integrator_step

bool ean /true

If enabled, the intial guess for the iteration variables will
be set to theiteration variables from the last integrator

step.

nl e_sol ver _use_nom nal s_as_
fal | back

bool ean /true

If enabled, the nominal values will be used asiinitial
guess to the solver if initialization failed.

time_events_default_tol

real /2.22E-14

Default tolerance for the time event iterations.

use_j acobi an_equi libration

bool ean / f al se

If enabled, jacobian equilibration will be utilized in the
equation block solversto improve linear solver accuracy.

use_new on_for _brent

bool ean /true

If enabled, afew Newton steps are computed to get a bet-
ter initial guess for Brent.

bl ock_sol ver _experimental _ |integer /0 Activates experimental features of equation block solvers
node
cs_experiment al _node integer /0 Activates experimental features of CS ode solvers

118

Appendix B. Using External Functions
In Modelica

B.1. Introduction

External functions to a Modelica model is described by the language specification (3.2r2 Section 12.9 External
Function Interface). Thisappendix isintended to describetool specific behaviour and common problemsinrelation
to the external functions. JModelica.org supports interfacing with both C and FORTRAN 77 functions.

B.2. LibraryDirectory

In addition to the base directory specified by the LibraryDirectory annotation the compiler looks for libraries in
<base>/<arch> and <base>/<arch>/<comp> with higher priority for the more specific directories. If the function
is intended to be used on multiple platforms or with multiple c-compilers there needs to be a specific version of
thelibrary file for each intended use. For example, if alibrary isto be used on both 32 and 64 bit windows, using
both gcc and other ¢ compilers, one would have to add several versions of the library. Each compiled specifically
for each platform and compiler combination. Note that the version of the compiler is also specified, since different
versions of the same compiler could be incompatible.

<base>/wi n32/ gcc472/
<base>/ wi n64/ gcc472/

B.3. GCC

When compiling with GCC we use the -std=c89 flag. This means any header file included must conform to the
€89 standard. A common issue is comments. c89 does not allow "//" comments, Only "/* */". When the header file
include "//" comments the compilation will fail. The error message usually 1ooks something like this:

sources/ Test _Test1_funcs.c:4:1: error: expected identifier or '(' before '/"' token

119

Appendix C. Release Notes

C.1. Release notes for JModelica.org version 2.1
C.1.1. Highlights

One of the focus areas for this release has been performance. The following are the main improvements:

« With this release compiler performance has been improved with up to 30% in compilation time and 20% in
memory reduction for some benchmark models.

* Support for the sparse solver SuperL U is added for simulation of FMI12 ME FMUsin PyFMI.

* A sparse solver has been added to solve large linear blocks.
C.2. Release notes for JModelica.org version 2.0
C.2.1. Highlights

For this release, focus has been on ModelicalM SL compliance. All example models in the bundled MSL version
simulate correctly with this release, with marginal additions, see the section called “Modelica Standard Library
(MSL)". Thereis also support for IBPSA, see the section called “IBPSA”

A novel co-simulation master isavailablein PyFMI. It implements a number of master algorithms, see [And2016]
for details.

C.2.2. Compiler

C.2.2.1. Compliance
Modelica Standard Library (MSL)

For this release, the Modelica Standard Library (MSL) version 3.2.2 build 3 with the following patches applied
is used:

* To the model Modelica.Blocks.Examples.NoiseExamples.ActuatorWithNoise defined in Modelica/Blocks/
package.mo a StateSel ect.alwaysis added for Controller.y1. With this patch dynamic state selection is avoided.
See also the reported issue 2189 on the GitHub repository for Modelica Association.

e The model Modelica.Fluid.Examples.Tanks. TanksWithOverflow does not initialize with the origina
parametrization in MSL 3.2.2 build 3 due to variable bounds not being respected, see issue 2060 on the GitHub
repository for Modelica Association. In the patch additional fluid flows through an overflow pipeif the level of
the upper tank exceeds 6 meters instead of 10 meters.

120

https://github.com/modelica/Modelica/issues/2189
https://github.com/modelica/Modelica/issues/2060

Release Notes

e The state selection in Modelica.Magnetic.FluxTubes.Examples.Hysteresis.HysteresisModel Comparison is
patched to improve the numerical robustness, seeissue 2248 on the GitHub repository for Modelica Association.

* In Modelica.Fluid.Examples. TraceSubstances.RoomCO2WithControls the experiment tolerance is tightened to
1e-007 instead of 1e-006 to avoid chattering.

* In Modelica.Fluid.Examples.Inver seParameterization pump.m_flow_start is set to 0.5 instead of 0.0. With this
change the correct branch is chosen in the actual Stream operator, see issue 2063 on the GitHub repository for
M odelica Association.

With the patches listed above applied, all example modelsin version 3.2.2 build 3 of MSL simulate correctly with
JModelica.org 2.0. Theresults can be seen in the compliance reportsfor simulation and check on the IModelica.org
download site.

The trunk version of MSL has some additional example models compared to version 3.2.2. build 3. Compliance
reports for trunk MSL can be found on the IModelica.org public Jenkins, using trunk version of JModelica.org.

IBPSA

With IModelica.org 2.0 there is support for IBPSA, a Modelica library for building and disctrict energy systems.
More information can be found on the ModelicaBPSA library GitHub website.

C.2.2.2. Simulation

For IModelica.org 2.0 improvements have been made for numerical robustnessduring initialization and simulation,
especialy with regards to event handling.

C.2.2.3. A novel co-simulation algorithm

A novel co-simulation master algorithm is now available in the Python package PyFMI. The master algorithm
supports FMUs 2.0 for co-simulation. Features of the master algorithm include aparallel Jacobi approach aswell as
astep-size controlled a gorithm based on Richardson extrapolation. The theory and implementation of the software
is described in [And2016].

C.2.2.4. HTML Diagnostics

Improved HTML diagnostics with formatting and interactive functions.
C.3. Release notes for JModelica.org version 1.17
C.3.1. Highlights

For thisrelease, al focus has been on ModelicalM SL compliance. All example modelsin thebundled MSL version
both check and simulate correctly with this release.

121

https://github.com/modelica/Modelica/issues/2248
https://github.com/modelica/Modelica/issues/2063
http://jmodelica.org/binary
http://jmodelica.org:8080
https://github.com/ibpsa/modelica-ibpsa

Release Notes

C.3.2. Compiler
C.3.2.1. Compliance

For this release, the Modelica Standard Library (MSL) version 3.2.1 build 4 is used with some additional hand-
picked revisionsfrom trunk. All example modelsin thisversion of MSL simulate correctly with the IModelica.org
1.17 release. The results can be seen in the compliance reports for simulation and check on the IModelica.org
download site.

The trunk version of MSL has some additional example models compared to version 3.2.1. build 4. Compliance
reports for trunk MSL can be found on the IModelica.org public Jenkins, using trunk version of JModelica.org.

C.4. Release notes for JModelica.org version 1.16
C.4.1. Highlights

« Strong focus on ModelicalM SL compliance

« A number of improvements to the CasADi tool chain for optimization

C.4.2. Compiler
C.4.2.1. Compliance

For this release, there has been a strong emphasis on improving ModelicalM SL compliance. In several MSL sub-
packages almost all example models now simulate with a correct result. Complete compliance reports can be found
on JModelica.org public Jenkins.

Especially, compliance improvements have been made in the following subpackages:
» Modelica.Mechanics.MultiBody

* ModelicaBlocks

» Modelica.Electrical.Analog

» Modelica.Electrical .Digital

« Modelica.Electrical .Quasi Stationary

* Modelica.Electrical .Spice3

* Modelica.Magnetic

* Modelica.Mechanics.Rotationa

122

http://jmodelica.org/binary
http://jmodelica.org:8080
http://jmodelica.org:8080

Release Notes

ModelicaMedia
Modelica.Thermal

ModelicaMath

Further, the following operators are now supported:

delay

spatial Distribution

C.4.2.2. Support for dynamic state select

JModelica.org now does dynamic state selection, when necessary.

C.4.3. Optimization

Several additions and improvements in the CasADi tool chain for optimization have been made. Among the most
important are:

Warm starting - descretize an optimization problem once, solve it multiple times with different parameters,
inputs, and initial guesses

Classes for Model Predictive Control and Moving Horizon Estimation

Back tracking from discretized problem to original. Trace back residuals, dual variables, and troublesome Jaco-
bian entriesto the original model's equations and variables

Possible to inspect equation scaling

Checkpointing option to reduce discretization work

C.5. Release notes for JModelica.org version 1.15
C.5.1. Highlights

FMI export supporting FMI 2.0

FMI import supporting FMI 2.0 with PyFMI
Improved MSL compliance

Support for over-constrained initialization systems

Dynamic optimization framework based on CasADi 2.0

123

Release Notes

» Improved numerical algorithmsin FMU runtime

C.5.2. Compiler

C.5.2.1. Compliance

Many bug fixesin the compiler hasresulted in greatly increased M SL support. Most or al of thetestsand examples
for the following MSL sub-libraries now compile and simulate successfully (complete compliance information for
MSL can be found on the IModelica.org website, www.jmodelica.org):

* Blocks

» ComplexBlocks
 Electrical.Analog

* Electrical.Machines

¢ Electrical .MultiPhase

* Electrical.Quasi Stationary
* Electrical.Spice3

» Magnetic

* Mechanics.Rotational

* Mechanics.Trand ational
* Media

* Thermal

* Utilities

C.5.2.2. Support for over-constrained initialization systems

Automatic balancing of over-constrained initial systems is now implemented. This means that the compiler auto-
matically checks the consistency of the initial system and automatically removes redundant initial equations.

C.5.2.3. FMU 2.0 export

Support for export of FMUs according to the the recently released FMI 2.0 specification, both for Model Exchange
and Co-Simulation, has been added.

124

Release Notes

C.5.2.4. Improved numerical algorithms in FMU runtime

Numerous improvements has been made to the FMU runtime code. Specific improvements include solving one-
dimensional non-linear systems more robustly.

C.5.2.5. CasADi 2.0 support in Optimization

The CasADi based optimization tool chain has been updated to work with CasADi 1.9 and later (which is not
backwards compatiblewith CasADi 1.8 and earlier). Thisallowsexploiting new CasADi improvements such asbug
fixes, pluggable solvers, and improved documentation. The version of CasADi that is included in IModelica.org
isnow 2.0.

C.5.3. Simulation

Support for the recently released FM|I 2.0 specification has been included in PyFMI. FMUsfollowing FMI 2.0 can
now be loaded and simulated just as easily as FMUs following FMI 1.0.

C.6. Release notes for JModelica.org version 1.14
C.6.1. Highlights

 All modelsinthe ModelicaStandard Library, except Modelica.Fluid and those using operator delay() or function
pointers, pass error check

» FMI export supporting FMI 2.0RC2
* FMI import supporting FMI 2.0RC2 with PyFMI
 Improved error messages from the compiler

 Various improvements and extensions to the CasADi-based optimization toolchain

C.6.2. Compiler

C.6.2.1. Compliance

A lot of work with compliance has resulted in that almost all modelsin the Modelica Standard Library now pass
error check. Exceptions are modelsin Modelica.Fluid and those using the operator delay() or function pointers. In
particular, the following improvements have been made:

 Support for arrays indexed with enumerations or Booleans

 Support for overloaded operators and the Complex type

125

Release Notes

* Improved error messages

 Support for structural parameters depending on external C/Fortran code
 Support for index reduction of optimization classes

 Improved modularization and extension points in the compiler

 Support for index reduction of optimization classes

» Many bug fixes to improve Modelica compliance

C.6.2.2. New compiler API

A new Java API for calling the compiler through a separate process has been added.
C.6.2.3. FMI 2.0 RC2 export

Support for export of FMUs that are compliant with FMI 2.0 RC2 has been added.

C.6.3. Simulation

Support for import and simulation of 2.0 RC2 FMUs with the Python package PyFMI.

C.6.4. Optimization

The following improvements have been made to the CasADi-based collocation a gorithm:
» More efficient memory usage and code generation for function evaluations

* Interface added to WORHP, which serves as an alternative to [POPT

» More general treatment of blocking factors. In particular it is now possible to penalize and constrain the discon-
tinuity jumps.

C.7. Release notes for JModelica.org version 1.13
C.7.1. Highlights

« FMI 2.0 Export, according to RC1
* New CasADi tool chain for optimization

¢ In-lined switches

126

Release Notes

* Improved compliance
C.7.2. Compilers
C.7.2.1. FMI 2.0 RC1 export

FMI 2.0 export according to RC1 is supported. There are some limitations, summarized in the list below.
 Support for dependencies but not for dependenciesKind in the XML tag Model Structure

 Support for directional derivative but known to have limitations in some cases

» No support for strings and running asynchronuously

» No support for FMU states (set, get and serialize)

C.7.2.2. Compliance

» Improved support for expandable connectors

 Improved support for unknown array sizesin functions

 Improved handling of the state select attribute

» Many bug fixes
C.7.3. Simulation

C.7.3.1. In-lined switches

In-lined switches have been introduced, which gives a more robust initialization and simulation of systems with
discrete parts.

C.7.4. Optimization
C.7.4.1. New CasADi tool chain

 Support for more Modelica features than previous CasADi-based tool chain
* User defined functionsin models
« No support for control flow
» Flat model is exposed in Python in symbolic form using CasADi, and can be inspected and manipul ated

 Support for avariety of collocation options

127

Release Notes

C.8. Release notes for JModelica.org version 1.12
C.8.1. Highlights

 Greatly improved support for Modelica.M echanics.MultiBody
 Support for expandable connectors

 Support for when statements

 Support for event generating built-in functions

 Support for overconstrained connection graphs

 Support for reinit() operator

C.8.2. Compilers

The following compliance improvements have been made:

» Improved support for algorithms, including when statements.

 Improved support for if equations.

 Improved handling of discrete constructs.

 Improved handling of attributesin alias sets.

 Improved index reduction agorithm.

» Added support for expandable connectors and for overconstrained connection systems.
» Added support for automatic differentiation of functions with smoothOrder annotation.
» Added support for String operations.

e Many bug fixes.

Added check mode, where a class is checked for errorsto seeif it can be used in asimulation class.

Class annotations are now only allowed as the last element of the class, as per the Modelica 3.2 specification.

C.8.3. Simulation

The following simulation improvements have been made:

128

Release Notes

* Improved the simulation run-time with support for the improvements made in the compiler
 Improved the robustness when solving linear and nonlinear blocks.

JModelica.org now simulates the example models from the MultiBody package in MSL with the exception of the
few models that require dynamic state selection.

C.8.4. Contributors

Bengt-Arne Andersson
Christian Andersson
Tove Bergdahl

Emil Fredriksson
Magnus Gafvert

Toivo Henningsson
Jonathan Kémpe
Bjorn Lennernés
Fredrik Magnusson
Jesper Mattsson

lakov Nakhimovski
Jon Sten

Johan Ylikiiskila
Johan Akesson
C.8.4.1. Previous contributors
Sofia Gedda

Petter Lindgren

John Lindskog

Tobias Mattsson

129

Release Notes

Lennart Moraeus
Philip Nilsson

Teo Nilsson

Patrik Meijer
Kristina Olsson
Roberto Parrotto
Jens Rantil

Philip Reuterswérd

Jonas Rosenqvist

C.9. Release notes for JModelica.org version 1.11
C.9.1. Highlights

* Runtime logging

 Support for ModelicaError and assert
 Additional method in block solver
 Support for ModelicaStandardTablesin MSL

» Improved compliance

C.9.2. Compilers

The following compliance improvements have been made:

« Most of the previously unsupported operators are now supported for FMUs

 Support for assert clauses

« String operations are now supported (thisis useful for asserts, even though String variables are not supported)
 Support for vectorization for built-in functions

« Inlining of simple functionsis now activated by default

130

Release Notes

» Several bug fixes
C.9.3. Simulation

C.9.3.1. Runtime logging

The runtime logging has been much improved with a new debugging and analysis framework. This enables de-
bugging of convergenceissuesin non-linear systems of equations.

C.9.3.2. Support for ModelicaError and assert

The compiler and runtime has support for ModelicaError and assert clauses. If an assert clause fails or a Modeli-
caError is called, the integrator will reject the current step.

C.9.4. Contributors

Bengt-Arne Andersson
Christian Andersson
Tove Bergdahl

Emil Fredriksson
Magnus Gafvert

Toivo Henningsson
Jonathan Kémpe
Fredrik Magnusson
Jesper Mattsson

|akov Nakhimovski
Jon Sten

Johan Ylikiiskila
Johan Akesson
C.9.4.1. Previous contributors

Sofia Gedda

131

Release Notes

Bjorn Lennernas
Petter Lindgren
John Lindskog
Tobias Mattsson
Lennart Moraeus
Philip Nilsson
Teo Nilsson
Patrik Meijer
Kristina Olsson
Roberto Parrotto
Jens Rantil

Philip Reuterswérd

Jonas Rosenqvist

C.10. Release notes for JModelica.org version 1.10
C.10.1. Highlights

» Export of FMUsfor Co-Simulation

 Import of FMU 2.0b4 in PyFMI

 Improved log format for FMUs

* Improved variable scaling in the CasADi collocation

 Improved handling of measurement data in the CasADi collocation
 Improved logging from compilers

 Improved Modelica compliance

C.10.2. Compilers

The following compliance improvements have been made:

132

Release Notes

» Thefollowing operators are now supported:
» smooth()
o skew(x)
o scaar(A)
* vector(A)
o matrix(A)
« diagonal(v)

 Improved handling of unmatched HGT. All unmatched iteration variables and residual equations are now paired
and treated the same way asregular HGT pairs.

» Improvements have been made to analytical jacobians. Notably full support for functions and bug fixes.

Also many bug fixes and performance improvements have been made.
C.10.2.1. Export of FMUs for Co-Simulation

Export of FMUs for Co-Simulation version 1.0 is now supported. Specifying a co-simulation FMU instead of a
model exchange FMU is done via an option to the conpi | e_f ru method. The internal solver in the co-simulation
FMU is CVode from the Sundials suite and there is also an explicit Euler method. The choice of the solver can
be changed via a parameter in the FMU.

C.10.3. Python

C.10.3.1. Improved result data access

Modified handling of simulation and optimization results to facilitate post processing of results such as plotting.
Accessing variables and parameters from results will always return a vector of size equal to the time vector. Also,
the base result class (JMResul t Base) has two new functions, i ni ti al andfi nal , which will always return initial
and final value of the simulation/optimization as scalar values. See both Chapter 5 and Chapter 6 for plotting code
examples.

C.10.3.2. Improved error handling

Improved error handling of compiler problems (exceptions, errors and warnings). Problems are now given in the
same way as regardless if JPype or separate process is used when compiling. Additionally errors and warning
are now returned as python objects to facilitate easier post processing of compiler problems. It is also possible to
retrieve warnings from the return result of conpi I e_f mu, conpi | e_j mu and conpi | e_f nux, e.g.:

133

Release Notes

r = conpile frmu(' Test', 'test.m')
print r.warnings

C.10.3.3. Parsing of FMU log files

FMUs and JMUs created with IModelica.org now produce logs in a structured XML format, which can be either
parsed using tools in the Python module pyj ni . | og or using general purpose XML tools. See Section 4.5.2 for
code examples.

C.10.4. Simulation
C.10.4.1. Support for FMU version 2.0b4

Added support for simulation of models following the FMI version 2.0 beta 4, both model exchange FMUs and
co-simulation FMUs.

C.10.4.2. Result filter

Added an option to the simulation method for filtering which variables are stored. Thisis especially useful in case
of large models with many variables as just selecting a subset of variables to store can speed up the simulation.
Additionally there is now the option to store the result directly in the memory instead of writing the result to file.

C.10.4.3. Improved solver support

Improvements on the solvers has been made resulting in that smulation of Model Exchange FMUs can now be
performed by a number of solvers. See the simulation options for the supported solvers. For example there is now
an Radaub solver.

C.10.5. Optimization

C.10.5.1. Improved variable scaling

The variable scaling performed based on nominal trajectories for the CasADi collocation has been improved and
can now be set individually for each variable. It a'so has a more robust default behavior.

C.10.5.2. Improved handling of measurement data

The old class Par anet er Est i mat i onDat a for the CasADi collocation has been replaced by Measur enent Dat a.
The new class can also be used for optimal control, and not only parameter estimation, and aso offers additional
strategies in the handling of the data.

C.10.6. Contributors

Bengt-Arne Andersson

134

Release Notes

Christian Andersson
Tove Bergdahl
Emil Fredriksson
Magnus Gafvert
Toivo Henningsson
Jonathan Kémpe
John Lindskog
Fredrik Magnusson
Jesper Mattsson
lakov Nakhimovski
Teo Nilsson

Jon Sten

Johan Ylikiiskila
Johan Akesson
C.10.6.1. Previous contributors
Sofia Gedda

Bjorn Lennernés
Petter Lindgren
Tobias Mattsson
Lennart Moraeus
Philip Nilsson
Patrik Meijer
Kristina Olsson

Roberto Parrotto

135

Release Notes

Jens Rantil

Philip Reuterswérd

Jonas Rosenqvist

C.11. Release notes for JModelica.org version 1.9.1

This release contains a bug fix which eliminates a dependency on external librariesin FMUs. Apart from this bug
fix, the releaseisidentical to IModelica.org version 1.9.

C.12. Release notes for JModelica.org version 1.9
C.12.1. Highlights

Improved function inlining

Manual selection of iteration variables in tearing algorithm - Hand Guided Tearing (HGT)
Support for external objects

Simulation of Co-simulation FMUs in Python

Improved compiler execution speed

Improved compiler memory efficiency

Support for MSL CombiTables

Improvements to the CasADi-based collocation optimization algorithm, including support for non-fixed time
horizons and supplying nominal trgjectories for scaling purposes

Updated to MSL 3.2

C.12.2. Compilers

C.12.2.1. Improved Modelica compliance

The following compliance improvements have been made:

Support for external objects (classes extending the predefined partial class External Object)
Support for the same component being added from more than one extends clause.

Many bug fixes, notably concerning inheritance and redeclares.

136

Release Notes

C.12.2.2. Support for MSL CombiTables

There is now support for MSL CombiTables, both 1D and 2D. The table can be either read from file or explicitly
supplied as a parameter matrix.

C.12.2.3. Support for hand guided tearing

The tearing algorithm in the compiler can now be influenced by user selected residuals and iteration variables,
in order to make such selections explicit, e.g., to exploit physical insight in the choice of iteration variables. The
selections are made by means of vendor specific annotations and can be done at the component level and at the
system level.

C.12.2.4. Improved function inlining

Improved support for inlining of functions. Notably anew in-lining mode has been added, where functionsthat can
be inlined without introducing additional variables to the model. The inlining algorithm has also been expanded
to handle more situations.

C.12.2.5. Memory and execution time improvements in the compiler

The compilation timesfor large simulation model s has been reduced by more than two orders of magnitudes. Also,
the memory required to compile large models has been decreased by two orders of magnitude. As a consequence,
larger models up to 100.000 equations can be comfortably compiled on a standard computer.

C.12.3. Python

C.12.3.1. Compile in separate process

The possibility to compile in a separate process from the Python interface has been added. This is enabled with
an argument to conpi | e_f mu, conpi | e_j mu or conpi | e_f nux which is Fal se by default. It is also possible to
pass arguments to the JVM. This enables, among other things, users on 64 bit Windows to use a 64 bit JRE (Java
Runtime Environment) for compiling a model.

C.12.4. Simulation

C.12.4.1. Simulation of co-simulation FMUs

Support for simulation of co-simulation FMUs following the FMI version 1.0 has been implemented and follows
the same work-flow as for loading and simulating an model exchange FMU, i.e:

frompyfm inport |oad_fmu
nodel = | oad_f nmu(" CS_Model . fmu")
res = nodel . simulate(final _tine=1.0)

137

Release Notes

C.12.5. Optimization

C.12.5.1. Improvements to CasADi-based collocation algorithm
The following features have been added to the CasADi-based collocation algorithm
* Support for non-fixed time horizons, allowing the formulation of, for example, minimum-time problems

* Possibility to supply nominal trajectories based on simulation results, which are used to compute (possibly time-
variant) scaling factors. This makesit possible to conveniently obtain good scaling for all variablesin a model.

 Possibility to use more advanced interpolation of optimized inputs based on collocation polynomials, instead of
linear interpolation, providing higher accuracy when simulating a system using optimized inputs

* Setting of nomina attributes from Python in loaded models

C.12.6. Contributors

Bengt-Arne Andersson
Christian Andersson
Tove Bergdahl
Magnus Géfvert
Fredrik Magnusson
Jesper Mattsson

lakov Nakhimovski
Jonas Rosenqvist

Jon Sten

Johan Ylikiiskila
Johan Akesson
C.12.6.1. Previous contributors
Sofia Gedda

Petter Lindgren

Tobias Mattsson

138

Release Notes

Lennart Moraeus
Philip Nilsson
Patrik Meijer
Kristina Olsson
Roberto Parrotto
Jens Rantil

Philip Reuterswérd

C.13. Release notes for JModelica.org version 1.8.1

Thisrelease is identical to JIModelica.org version 1.8 apart from one important bug fix. The issue that has been
fixed concerns the scaling of start attributesin IMUs.

C.14. Release notes for JModelica.org version 1.8
C.14.1. Highlights

» Improved Modelica compliance of the compiler front-end, including support for if equations and inner/outer
declarations

» Optimized performance and memory utilization of the compiler front-end

A new state selection algorithm with support for user defined state selections
A new function inlining algorithm for conversion of agorithmic functionsinto equations

» Improvements to the CasADi-based collocation optimization algorithm, including support for terminal con-
straints

C.14.2. Compilers

C.14.2.1. Improved Modelica compliance
The following compliance improvements have been made:
» Support for if equations

 Support for inner/outer declarations

139

Release Notes

» Expressionsin der() operator
* Function call equationsin when equations

« Limited support for String parameters. String parameters are now supported in the compiler front-end, although
they are discarded in the code generation.

Also, many bug fixes and performance improvements in the compiler are included in this rel ease.
C.14.2.2. Function inlining

Thereisanew function inlining algorithm for conversion of algorithmic functions into equations.
C.14.2.3. New state selection algorithm

The new state selection algorithm takes user input (stateSelect attribute) into account and implements heuristics to
select states that avoids, if possible, iteration of non-linear systems of equations.

C.14.3. Python

C.14.3.1. Simplified compiling with libraries
The compiler now support adding extralibrariesasfiles, which makesit easier to compileamodel using astructured
library not in the MODELICAPATH. Both Python functions conpi | e_j mu and conpi | e_f mu support this. For

example, compiling A. B. Exanpl e from alibrary Aindirectory Li bDi r with conpi I e_f mu, this can now be written
as:

conpile_fru(' A B. Exanple', 'LibDr/A)
C.14.4. Optimization

C.14.4.1. Improvements to CasADi-based collocation algorithm
The CasADi-based collocation algorithm has been improved with new features
 Support for point constraints

 Setting of parameter values from Python in loaded models

* Setting of min/max attributes from Python in loaded models

C.14.5. Contributors

Bengt-Arne Andersson

140

Release Notes

Christian Andersson
Tove Bergdahl
Magnus Gafvert
Fredrik Magnusson
Jesper Mattsson
Tobias Mattsson
lakov Nakhimovski
Jon Sten

Johan Ylikiiskila
Johan Akesson
C.14.5.1. Previous contributors
Sofia Gedda

Petter Lindgren
Lennart Moraeus
Philip Nilsson
Patrik Meijer
Kristina Olsson
Roberto Parrotto
Jens Rantil

Philip Reuterswérd
C.15. Release notes for JModelica.org version 1.7
C.15.1. Highlights

» Improved support for hybrid systems, including friction models and ideal diodes

141

Release Notes

 Support for tearing of equation systems

 Support for external Fortran functions

 Support for function inlining

 Reorganization of the Python code: a new stand-al one package, PyFMI, provided

* A novel dynamic optimization algorithm implemented in Python based on collocation and CasADi is provided
C.15.2. Compilers

C.15.2.1. Support for mixed systems of equations

Mixed systemsof equations, i.e., equation systems containing both real and integer/boolean variablesare supported.
Such systems commonly occursin, e.g., friction models and diode models.

C.15.2.2. Support for tearing

Tearing isatechniqueto improve simulation efficiency by reducing the number of iteration variableswhen solving
systems of equations. A tearing algorithm relying on graph-theoretical methods has been implemented, which is
used to generate more efficient simulation code.

C.15.2.3. Improved Modelica compliance

With added support for external Fortran function and many bug fixes, the compiler now handles many models that
previously would not compile.

C.15.2.4. Function inlining

Callsto Modelicafunctions (i.e. not external functions) in equations can now be inlined, by adding the equivalent
equations and temporary variables. Thisallows sometransformations that are specific to equationsto be performed
on the function calls aswell. It aso allows compilation targets that does not handle functions, such as CasADi, to
be used with models containing functions. Currently, only functions that only contains assignment statements are
supported. Such function are common in e.g. media libraries.

C.15.3. Python

C.15.3.1. New package structure
The Python code has been refactored into three packages:

* PyFMI A package for working with FM Us, perform simulations, interact with the model, plotting of result data
and more. This package can be used stand-alone, see www.pyfmi.org.

142

http://www.pyfmi.org

Release Notes

* PyJMI A packagefor working with IMUs, solve optimization problems, perform simulations, model interaction
and more.

» PyModelica A package containing Modelica and Optimica compilers.
C.15.3.2. Support for shared libraries in FMUs
The FMU import and export now supports dependencies on extra shared libraries. For the export, the shared li-

braries are placed in the same folder as the model binary. Similarly, any shared libraries packed with the model
binary will be found when importing the FMU.

C.15.4. Simulation

C.15.4.1. Simulation of hybrid systems
The improved compiler support for mixed systems of equations is matched by extensions to the IModelica.org

simulation runtime system, enabling simulation of more sophisticated hybrid models. Amongst others, the classic
M odelica.M echanics.Rotational .Exampl es.CoupledClutches benchmark model can be now simulated.

C.15.5. Optimization

C.15.5.1. A novel CasADi-based collocation algorithm
A novel CasADi-based collocation algorithm is provided. The new algorithm isimplemented in Python and relies
on the CasADi package for computation of derivativesand interaction with IPOPT. The new algorithm is an order

of magnitude faster than the existing coll ocation algorithm on many problems, and provides significantly improved
flexibility.

C.15.6. Contributors

Bengt-Arne Andersson
Christian Andersson
Tove Bergdahl
Magnus Gafvert

Petter Lindgren
Fredrik Magnusson

Jesper Mattsson

143

Release Notes

Patrik Meijer
|akov Nakhimovski
Johan Ylikiiskila
Johan Akesson
C.15.6.1. Previous contributors
Sofia Gedda
Lennart Moraeus
Philip Nilsson
Kristina Olsson
Roberto Parrotto
Jens Rantil

Philip Reuterswérd
C.16. Release notes for JModelica.org version 1.6
C.16.1. Highlights

« A new derivative free parameter optimization algorithm for FMUs

» A new pseudo spectral optimization algorithm

* Index reduction to handle high-index DAEs

* A new graphical user interface for plotting of simulation and optimization results

* Icon rendering and many improvementsin the Eclipse Modelica plug-in

C.16.2. Compilers

C.16.2.1. Index reduction

High-index systems, commonly occurring in mechanical systems, are supported in IModelica.org 1.6. The imple-
mentation relies on Pantelides algorithm and the dummy derivative selection algorithm.

144

Release Notes

C.16.2.2. Modelica compliance
The following improvements to the Modelica compliance of the editors has been made:
* Partial support for the smoot h() operator (not used in event handling, otherwise supported).

 Support for global name lookup (i.e. names starting with adot are looked up from the top scope).

C.16.3. Python

C.16.3.1. Graphical user interface for visualization of simulation and optimiza-
tion results

A new graphical interface for displaying simulation and / or optimization results have been implemented. The
interface also supports results generated from Dymola, both binary and textual.

C.16.3.2. Simulation with function inputs

The Python simulation interface has been improved so that top level inputs in FMUs can be driven by Python
functions in addition to tables.

C.16.3.3. Compilation of XML models

A new convenience function for compilation of Modelica and Optimica models into XML, including equations,
has been added.

C.16.3.4. Python version upgrade
The Python package has been updated to Python 2.7.

C.16.4. Optimization

C.16.4.1. Derivative- free optimization of FMUs

The derivative-free optimization algorithm in JM odelica.org enables users to calibrate dynamic models compliant
with the Functional Mock-up Interface standard (FMUs) using measurement data. The new functionality offers
flexible and easy to use Python functions for model calibration and relies on the FMU simulation capabilities of
JModelica.org. FMU models generated by IModelica.org or other FMI-compliant tools such as AMESIim, Dymola,
or SimulationX can be calibrated.

C.16.4.2. Pseudo spectral methods for dynamic optimization

Pseudo spectral optimization methods, based on collocation, are now available. The algorithms relies on CasADi
for evaluation of derivatives, first and second order, and IPOPT is used to solve the resulting non-linear program.

145

Release Notes

Optimization of ordinary differential equations and multi-phase problems are supported. The algorithm has been
developed in collaboration with Mitsubishi Electric Research Lab, Boston, USA, where it has been used to solve
satellite navigation problems.

C.16.5. Eclipse Modelica plugin

The IModelica.org Eclipse plugin has improved to the point where we are ready to do arelease. Version 0.4.0 is
now available from the IModelica.org website.

Changes from the versions that has been available from the SVN repository are mainly stability and performance
improvements. To this end, some features have been disabled (auto-complete and format file/region). There are
also afew new features, most notably support for rendering of classicons.

C.16.6. Contributors

Christian Andersson
Tove Bergdahl
Sofia Gedda
Magnus Géfvert
Petter Lindgren
Fredrik Magnusson
Jesper Mattsson
Patrik Meijer
Lennart Moraeus
Kristina Olsson
Johan Ylikiiskila
Johan Akesson
C.16.6.1. Previous contributors
Philip Nilsson
Roberto Parrotto

Jens Rantil

146

Release Notes

Philip Reuterswérd

C.17. Release notes for JModelica.org version 1.5
C.17.1. Highlights

¢ FMU export

* Improvementsin compiler front-end

» Equation sorting and BLT

» Symbolic solution of simple equations

» Improved simulation support for hybrid and sampled systems
* Improved initialization with Kinsol and SuperLU

 Improved support for external functions.

C.17.2. Compilers

C.17.2.1. When clauses
When clauses are supported in the Modelica compiler.
C.17.2.2. Equation sorting

Equationsare sorted using Tarjan'salgorithm and theresulting BL T representation isused in the C code generation.
Also, trivial equations are solved and converted into assignment statements.

C.17.2.3. Connections
Added support for connecting arrays of components and for connect equationsin for clauses.
C.17.2.4. Eclipse IDE

The IModélica plugin for Eclipse has been updated to be more stable and to syntax highlight Modelica 3.2 code
properly.

C.17.2.5. Miscellaneous

Fixed several compiler bugs.

147

Release Notes

C.17.3. Simulation
C.17.3.1. FMU export

JModelica.org 1.5 supports export of Functional Mock-up I nterface (FM1) compliant model s (FMUs). The exported
models follows the FMI standard and may be imported in other FMI compilant simulation tools, or they may
be simulated using IModelica.org using the FMU import feature introduced in version 1.4. The exported FMUs
contain an XML file, containing model meta data such as variable names, a DLL, containing the compiled C
functions specified by FMI, and additional files containing the flattened Modelica model useful for debugging
purposes.

C.17.3.2. Simulation of ODEs

A causdlization approach to simulation of Modelica models has been implemented. This means that the DAE
resulting from flattening is transformed into an ODE, and ODE solvers can be used to simulate the model. This
feature is a requirement for export of FMUs. This strategy has required the symbolic agorithms and the C code
generation module to be adapted as described above. In addition, the simulation runtime system has been extended
toalow for trivial equations converted into assignmentsand for implicit systems of equations. Thelatter are solved
using the Newton solver KINSOL, modified to support regularization to handle singular Jacobian matrices.

C.17.3.3. Simulation of hybrid and sampled systems

When clauses are now supported, as well as the sample operator. Accordingly, some classes of hybrid systems
may be simulated as well as sampled control systems. In addition, variables of type Integer and Boolean are also
supported.

C.17.4. Initialization of DAEs

A novel initialization algorithm based on the Newton solver KINSOL from the SUNDIAL Ssuiteisintroduced. The
KINSOL solver has been improved by adding support for Jacobian regularization in order to handle singular Jaco-
bians and by interfacing the sparse linear solver SuperL U in order to more efficiently handle large scale systems.

C.17.5. Optimization

Curtis Powell Reid seeding has been implemented to speed up computation of sparse Jacobians. When solving
large optimization problems, this can give a speed-up factor of up to 10-15.

C.17.6. Contributors

Christian Andersson
Tove Bergdahl

Magnus Gafvert

148

Release Notes

Jesper Mattsson

Johan Y likiiskila

Johan Akesson

C.17.6.1. Previous contributors
Philip Nilsson

Roberto Parrotto

Jens Rantil

Philip Reuterswérd
C.18. Release notes for JModelica.org version 1.4
C.18.1. Highlights

» Improved Python user interaction functions

* Improvementsin compiler front-end

 Support for sensitivity analysis of DAEs using Sundials
* Introduced new model concept, jmu-models.

 Support for enumerations

C.18.2. Compilers

C.18.2.1. Enumerations

Added support for enumerations to the same extent as Integers, except that arrays indexed with enumerations are
not supported.

C.18.2.2. Miscellaneous
Fixed many compiler bugs, especially concerning complex class structures.
C.18.2.3. Improved reporting of structural singularities

Systems which are structurally singular now generates an error message. Also, high-index systems, which are not
yet supported, are reported as structurally singular systems.

149

Release Notes

C.18.2.4. Automatic addition of initial equations

A matching algorithm is used to automatically add initial equationsto obtain abalanced DAE initialization system.
If too few initial equations are given, the algorithm will set thef i xed attribute to true for some of the differentiated
variablesin the model.

C.18.3. Python interface

C.18.3.1. Models
* Introduced new model classj nodel i ca. j mi . IMUMbdel which replaced j model i ca. j ni . JM Model .
e jrmodelica.fm.FM Mdel changed nametoj nodel i ca. f mi . FMUMbdel .

e jmodelica.jm.JM Mdel . get_val ue and set _val ue have changed to j nodel i ca. j mi . JMUMbdel . get and
set , which have also been introduced for j model i ca. f ni . FMUMbdel

C.18.3.2. Compiling
* Introduced IMU files which are compressed files containing files created during compilation.

* Introduced new method j model i ca. j mi . conpi | e_j mu which compiles Modelicaor Optimicamodelsto IMUs.
These IMUs are then used when creating a JMUMbdel which loads the model in a Python object.

» Removed possihility to compile modelsdirectly in high-level functions, initialize, simulate and optimize. Instead
conpi | e_j mu should be used.

C.18.3.3. initialize, simulate and optimize

e initialize, simulate and optinize ae no longer functions under jnodelica but methods of
j model i ca. j mi . JMUMbdel and j model i ca. fni . FMUMbdel (i nitialize andsimul at e only).

» New objects for optionstoinitialize, sinmulate and optim ze have been introduced. The al g_ar gs and
sol ver _ar gs parameters have therefore been removed. The optionsfrom al g_ar gs and sol ver _ar gs can now
befound in the options object. Each algorithm fori ni ti al i ze, si nul at e and opt i ni ze havetheir own options
object.

C.18.3.4. Result object

Added convenience methods for getting variable tragjectories from the result. The result trajectories are now ac-
cessed as objectsin adictionary:

res = nodel . si mul at e()
yres = res['y']

150

Release Notes

C.18.4. Simulation

C.18.4.1. Input trajectories

Changed how the input trajectories are handled. The trajectories now have to be connected to an input variable
as a2-tuple. The first argument should be alist of variables or a single variable. The second argument should be
a data matrix with the first column as the time vector and the following columns corresponding to the variables
in the first argument.

C.18.4.2. Sensitivity calculations

Sensitivity calculations have been implemented when using the solver IDA from the Assimulo package. The sen-
sitivity calculations are activated with the the option:

opty['IDA_options]['sensitivity'] = True
which calculates sensitivities of the states with respect to the free parameters.
C.18.4.3. Write scaled simulation result to file

In some cases, it is useful to be able to write the scaled simulation result when the option
enabl e_vari abl e_scal i ng is set to true. Specifically, this supports debugging to detect if additiona variables
should have anominal value. This feature is available also for initialization and optimization.

C.18.5. Contributors
Christian Andersson

Tove Bergdahl

Magnus Gafvert

Jesper Mattsson

Johan Ylikiiskila

Johan Akesson

C.18.5.1. Previous contributors
Philip Nilsson

Roberto Parrotto

Jens Rantil

151

Release Notes

Philip Reuterswérd

C.19. Release notes for JModelica.org version 1.3
C.19.1. Highlights

 Functional Mockup Interface (FMI) simulation support

* Support for minimum time problems

 Improved support for redeclare/replaceable in the compiler frontend
« Limited support for external functions

 Support for stream connections (with up to two connectors in a connection)

C.19.2. Compilers

C.19.2.1. The Modelica compiler

Arrays

Slice operations are now supported.

Array support is now nearly complete. The exceptions are:

* Functions with array inputs with sizes declared as":' - only basic support.
» A few array-related function-like operators are not supported.

» Connect clauses does not handle arrays of connectors properly.
Redecare

Redeclares as class elements are now supported.

Conditional components

Conditional components are now supported.

Constants and parameters

Function calls can now be used as binding expressions for parameters and constants. The handling of Integer,
Boolean and record type parametersis also improved.

152

Release Notes

External functions

 Basic support for external functions writtenin C.

» Annotations for libraries, includes, library directories and include directories supported.

« Platform directories supported.

 Can not be used together with CppAD.

« Arrays as arguments are not yet supported. Functionsin Modelica_utilies are also not supported.
Stream connectors

Stream connectors, including the operators inStream and actual Stream and connections with up to two stream
connectors are supported.

Miscellaneous
The error checking has been improved, eliminating many erroneous error messages for correct Modelica code.

The memory and time usage for the compiler has been greatly reduced for medium and large models, especially
for complex class structures.

C.19.2.2. The Optimica compiler
All support mentioned for the Modelica compiler applies to the Optimica compiler as well.
New class attribute objectivelntegrand

Support for the objectivel ntegrand class attribute. In order to encode Lagrange cost functions of the type

the Optimica class attribute obj ect i vel nt egr and is supported by the Optimica compiler. The expression L may
be utilized by optimization algorithms providing dedicated support for Lagrange cost functions.

Support for minimum time problems

Optimization problems with free initial and terminal times can now be solved by setting the free attribute of the
class attributes startTime and final Time to true. The Optimica compiler automatically translates the problem into
a fixed horizon problems with free parameters for the start en terminal times, which in turn are used to rescale
the time of the problem.

153

Release Notes

Using this method, no changes are required to the optimization algorithm, since afixed horizon problemis solved.

C.19.3. JModelica.org Model Interface (JMI)

C.19.3.1. The collocation optimization algorithm
Dependent parameters

Support for free dependent parameters in the collocation optimization algorithm is now implemented. In models
containing parameter declarations such as:

paraneter Real pl(free=true);
paraneter Real p2 = pi;

where the parameter p2 needs to be considered as being free in the optimization problem, with the additional
equality constraint:

pl = p2
included in the problem.
Support for Lagrange cost functions

The new Optimica class attribute objectivelntegrand, see above, is supported by the collocation optimization al-
gorithm. The integral cost is approximated by a Radau quadrature formula.

C.19.4. Assimulo

Support for simulation of an FMU (see bel ow) using Assimulo. Simulation of an FMU can either be done by using
the high-level method *simulate* or creating a model from the FMIModel class together with a problem class,
FMIODE which is then passed to CVode.

C.19.5. FMI compliance

Improved support for the Functional Mockup Interface (FMI) standard. Support for importing an FMI model,
FMU (Functional Mockup Unit). The import consist of loading the FMU into Python and connecting the models
C execution interface to Python. Note, strings are not currently supported.

Imported FMUs can be simulated using the Assimulo package.

C.19.6. XML model export

C.19.6.1. noevent Operator

Support for the built-in operator noEvent has been implemented.

154

Release Notes

C.19.6.2. static attribute

Support for the Optimica attribute static has been implemented.
C.19.7. Python integration

C.19.7.1. High-level functions

Model files

Passing more than one modé file to high-level functions supported.

New result object

A result object is used as return argument for all algorithms. The result object for each algorithm extends the base

class Resul t Base and will therefore (at least) contain; the model object, the result file name, the solver used and
the result data object.

C.19.7.2. File I/O

Rewriting xmlparser.py has improved performance when writing simulation result data to file considerably.

C.19.8. Contributors

Christian Andersson

Tove Bergdahl

Magnus Gafvert

Jesper Mattsson

Roberto Parrotto

Johan Akesson

Philip Reuterswérd

C.19.8.1. Previous contributors
Philip Nilsson

Jens Rantil

155

Release Notes

C.20. Release notes for JModelica.org version 1.2
C.20.1. Highlights

» Vectors and user defined functions are supported by the M odelica and Optimica compilers
» New Python functions for easy initialization, simulation and optimization

» A new Python simulation package, Assimulo, has been integrated to provide increased flexibility and perfor-
mance

C.20.2. Compilers
C.20.2.1. The Modelica compiler

Arrays

Arrays are now almost fully supported. This includes all arithmetic operations and use of arrays in all places
allowed in the language specification. The only exception is dice operations, that are only supported for the last
component in an access.

Function-like operators

Most function-like operators are now supported. The following list contains the function-like operators that are
not supported:

e sign(v)

* Integer(e)
e String(...)
o div(x,y)
e mod(x,y)
* rem(x.y)
. cail(x)

« floor(x)
* integer(x)

. delay(...)

156

Release Notes

 cardinality()

e semiLinear()

* Subtask.decouple(v)

* initial()

 terminal()

» smooth(p, expr)

» sample(start, interval)

* pre(y)

* edge(b)

* reinit(x, expr)

* scalar(A)

 vector(A)

o matrix(A)

« diagonal(v)

 product(...)

* outerProduct(vl, v2)

e symmetric(A)

o skew(x)

Functions and algorithms
Both algorithms and pure Modelica functions are supported, with afew exceptions:

» Useof control structures (if, for, etc.) with test or loop expressions with variability that is higher than parameter
is not supported when compiling for CppAD.

 Indexesto arrays of records with variability that is higher than parameter is not supported when compiling for
CppAD.

 Support for inputs to functions with one or more dimensions declared with ":" is only partial.

157

Release Notes

External functions are not supported.

Miscellaneous

 Record constructors are now supported.

 Limited support for constructs generating events. If expressions are supported.
» The noEvent operator is supported.

» Theerror checking has been expanded to cover more errors.

» Modelicacompliance errors are reported for legal but unsupported language constructs.
C.20.2.2. The Optimica Compiler

All support mentioned for the Modelica compiler applies to the Optimica compiler aswell.

C.20.3. The JModelica.org Model Interface (JMI)
C.20.3.1. General

Automatic scaling based on the noni nal attribute

The Modélica attribute nomi nal can be used to scale variables. This is particularly important when solv-
ing optimization problems where poorly scaled systems may result in lack of convergence. Automatic scal-
ing is turned off by default since it introduces a slight computational overhead: setting the compiler option
enabl e_vari abl e_scal i ng tot r ue enables this feature.

Support for event indicator functions

Support for event indicator functions and switching functions are now provided. These features are used by the
new simulation package Assimulo to simulate systems with events. Notice that limitations in the compiler front-
end applies, see above.

Integer and boolean parameters

Support for event indicator functions and switching functions are now provided. These features are used by the
new simulation package Assimulo to simulate systems with events. Notice that limitations in the compiler front-
end applies, see above.

Linearization

A function for linearization of DAE modelsis provided. The linearized models are computed using automatic dif-
ferentiation which givesresults at machine precision. Also, for index-1 systems, linearized DAESs can be converted
into linear ODE form suitable for e.g., control design.

158

Release Notes

C.20.4. The collocation optimization algorithm

C.20.4.1. Piecewise constant control signals

In control applications, in particular model predictive control, it is common to assume piecewise constant control
variables, sometimes referred to as blocking factors. Blocking factors are now supported by the collocation-based
optimization algorithm, seej nodel i ca. exanpl es. cstr_npc for an example.

C.20.4.2. Free initial conditions allowed

Therestriction that all state initial conditions should be fixed has been relaxed in the optimization algorithm. This
enables more flexible formulation of optimization problems.

C.20.4.3. Dens output of optimization result

Functions for retrieving the optimization result from the collocation-based algorithm in a dense format are now
provided. Two options are available: either a user defined mesh is provided or theresult is given for auser defined
number of points inside each finite element. Interpolation of the collocation polynomials are used to obtain the
dense output.

C.20.5. New simulation package: Assimulo

The simulation based on pySundials have been removed and replaced by the Assimulo package which is also
using the Sundials solvers. The main difference between the two is that Assimulo is using Cython to connect to
Sundials. This has substantially improved the simulation speed. For moreinfo regarding Assimulo and itsfeatures,
see: http://www.jmodelica.org/assimulo.

C.20.6. FMI compliance

The Functional Mockup Interface (FMI) standard is partially supported. FMI compliant model meta data XML
document can be exported, support for the FM1 C model execution interface is not yet supported.

C.20.7. XML model export

Models are now exported in XML format. The XML documents contain information on the set of variables, the
equations, the user defined functions and for the Optimica’s optimization problems definition of the flattened
model. Documents can be validated by a schema designed as an extension of the FMI XML schema.

C.20.8. Python integration

e The order of the non-named arguments for the ModelicaCompiler and OptimicaCompiler function
conpi | e_nodel has changed. In previous versions the arguments came in the order (nodel _fil e_nane,

159

http://www.jmodelica.org/assimulo

Release Notes

nodel _cl ass_nane, target = "nodel") andisnow (nodel cl ass_name, nodel file_nane, target =
"nodel ") .

» The functions set par anet er and get paraneter in jni.Mdel have been removed. Instead the functions
set _val ue and get_value (alsoinj ni . Model) should be used.

 Caching has been implemented in the xmlparser module to improve execution time for working with jmi.Model
objects, which should be noticeable for large models.

C.20.8.1. New high-level functions for optimization and simulation

New high-level functions for problem initialization, optimization and simulation have been added which wrap the
compilation of amodel, creation of amodel object, setup and running of an initialization/optimization/simulation
and returning of aresult in one function call. For each function there is an algorithm implemented which will be
used by default but there is also the possibility to add custom algorithms. All examples in the example package
have been updated to use the high-level functions.

C.20.9. Contributors
Christian Andersson

Tove Bergdahl

Magnus Gafvert

Jesper Mattsson

Philip Nilsson

Roberto Parrotto

Philip Reuterswérd

Johan Akesson

C.20.9.1. Previous contributors

Jens Rantil

160

Bibliography
[And2016] Christian Andersson. Methods and Tools for Co-Smulation of Dynamic Systems with the Functional

Mock-up Interface. LUTFNA-1010-2016. Lund University. Sweden. 2016.

[Jak2007] Johan Akesson. Toolsand Languagesfor Optimization of Large-Scale Systems. LUTFD2/ TFRT--1081--
SE. Lund University. Sweden. 2007.

[Jak2008b] Johan Akesson, Gorel Hedin, and Torbjérn Ekman. Tools and Languages for Optimization of Large-
Scale Systems. 117-131. Electronic Notesin Theoretical Computer Science. 203:2. April 2008.

[Jak2008a] Johan Akesson. Optimica - An Extension of Modelica Supporting Dynamic Optimization. Proc. 6th
International Modelica Conference 2008. Modelica Association. March 2008.

[Jak2010] Johan Akesson, Karl-Erik Arzén, Magnus Géfvert, Tove Bergdahl, and Hubertus Tummescheit. Mod-
eling and Optimization with Optimica and JModelica.org - Languages and Tools for Solving Large-Scale
Dynamic Optimization Problem. Computers and Chemical Engineering. 203:2. 2010.

[Eng2001] Peter Englezos and Nicolas Ka ogerakis. Applied Parameter Estimation for Chemical Engineers. Mar-
cel Dekker Inc. 2001.

[Mag2015] Fredrik Magnusson and Johan Akesson. Dynamic Optimization in JModelica.org. 471-496. Processes.
3:2. 2015.

[Mag2016] Fredrik Magnusson. Numerical and Symbolic Methods for Dynamic Optimization. Lund University.
Sweden. 2016.

[FM12017] Functional Mock-up Interface standard. http://www.fmi-standard.org

161

	JModelica.org User Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. About JModelica.org
	1.2. Mission Statement
	1.3. Technology

	Chapter 2. Installation
	2.1. Supported platforms
	2.2. Installation on Windows
	2.2.1. Dependencies
	2.2.2. Installation
	2.2.3. Verifying the installation
	2.2.4. Compilation from sources

	2.3. Installation on Linux systems
	2.3.1. Prerequisites
	2.3.1.1. Installing pre-compiled packages
	2.3.1.2. Compiling Ipopt
	2.3.1.3. Installing JModelica.org with WORHP (optional)

	2.3.2. Compiling
	2.3.3. Testing JModelica.org

	Chapter 3. Getting started
	3.1. The JModelica.org Python packages
	3.2. Starting a Python session
	3.2.1. Windows
	3.2.2. Linux

	3.3. Running an example
	3.4. Redefining the JModelica.org environment
	3.4.1. Example redefining IPOPT_HOME

	3.5. The JModelica.org user forum

	Chapter 4. Working with Models in Python
	4.1. Introduction to models
	4.1.1. The different model objects in JModelica.org

	4.2. Compilation
	4.2.1. Simple FMU-ME compilation example
	4.2.2. Simple FMU-CS compilation example
	4.2.3. Compiling from libraries
	4.2.4. Compiler settings
	4.2.4.1. compile_fmu arguments
	4.2.4.2. Compiler options

	4.3. Loading models
	4.3.1. Loading an FMU
	4.3.2. Transferring an Optimization Problem

	4.4. Changing model parameters
	4.4.1. Setting and getting parameters

	4.5. Debugging models
	4.5.1. Compiler logging
	4.5.2. Runtime logging
	4.5.2.1. Setting log level
	4.5.2.2. Interpreting logs from FMUs produced by JModelica.org

	4.5.3. Compiler Diagnostic Output

	Chapter 5. Simulation of FMUs in Python
	5.1. Introduction
	5.2. A first example
	5.3. Simulation of Models
	5.3.1. Convenience method, load_fmu
	5.3.2. Arguments
	5.3.2.1. Input
	5.3.2.2. Options for Model Exchange FMUs
	5.3.2.3. Options for Co-Simulation FMUs

	5.3.3. Return argument

	5.4. Examples
	5.4.1. Simulation of a high-index model
	5.4.2. Simulation and parameter sweeps
	5.4.3. Simulation of an Engine model with inputs
	5.4.4. Simulation using the native FMI interface
	5.4.4.1. Implementation

	5.4.5. Simulation of Co-Simulation FMUs

	Chapter 6. Dynamic Optimization in Python
	6.1. Introduction
	6.2. A first example
	6.3. Solving optimization problems
	6.4. Scaling
	6.5. Dynamic optimization of DAEs using direct collocation with CasADi
	6.5.1. Algorithm overview
	6.5.1.1. Reusing the same discretization for several optimization solutions
	6.5.1.2. Warm starting

	6.5.2. Examples
	6.5.2.1. Optimal control
	Compile and instantiate a model object
	Solve the DAE initialization problem
	Solving an optimal control problem

	Verify optimal control solution
	Exercises
	References

	6.5.2.2. Minimum time problems
	6.5.2.3. Optimization under delay constraints
	6.5.2.4. Parameter estimation

	6.5.3. Investigating optimization progress
	6.5.3.1. Collocation
	6.5.3.2. Inspecting residuals
	6.5.3.3. Inspecting the constraint Jacobian
	6.5.3.4. Inspecting dual variables
	6.5.3.5. Inspecting low level information about NLP solver progress

	6.5.4. Eliminating algebraic variables
	6.5.4.1. Basic use
	6.5.4.2. Small example
	6.5.4.3. The many colors of symbolic elimination
	6.5.4.4. Tearing
	6.5.4.5. Available options

	6.6. Derivative-Free Model Calibration of FMUs

	Chapter 7. Graphical User Interface for Visualization of Results
	7.1. Plot GUI
	7.1.1. Introduction
	7.1.2. Edit Options
	7.1.3. View Options
	7.1.4. Example

	Chapter 8. The Optimica Language Extension
	8.1. A new specialized class: optimization
	8.2. Attributes for the built in class Real
	8.3. A Function for accessing instant values of a variable
	8.4. Class attributes
	8.5. Constraints

	Chapter 9. Limitations
	Appendix A. Compiler options
	A.1. List of options that can be set in compiler

	Appendix B. Using External Functions in Modelica
	B.1. Introduction
	B.2. LibraryDirectory
	B.3. GCC

	Appendix C. Release Notes
	C.1. Release notes for JModelica.org version 2.1
	C.1.1. Highlights

	C.2. Release notes for JModelica.org version 2.0
	C.2.1. Highlights
	C.2.2. Compiler
	C.2.2.1. Compliance
	Modelica Standard Library (MSL)
	IBPSA

	C.2.2.2. Simulation
	C.2.2.3. A novel co-simulation algorithm
	C.2.2.4. HTML Diagnostics

	C.3. Release notes for JModelica.org version 1.17
	C.3.1. Highlights
	C.3.2. Compiler
	C.3.2.1. Compliance

	C.4. Release notes for JModelica.org version 1.16
	C.4.1. Highlights
	C.4.2. Compiler
	C.4.2.1. Compliance
	C.4.2.2. Support for dynamic state select

	C.4.3. Optimization

	C.5. Release notes for JModelica.org version 1.15
	C.5.1. Highlights
	C.5.2. Compiler
	C.5.2.1. Compliance
	C.5.2.2. Support for over-constrained initialization systems
	C.5.2.3. FMU 2.0 export
	C.5.2.4. Improved numerical algorithms in FMU runtime
	C.5.2.5. CasADi 2.0 support in Optimization

	C.5.3. Simulation

	C.6. Release notes for JModelica.org version 1.14
	C.6.1. Highlights
	C.6.2. Compiler
	C.6.2.1. Compliance
	C.6.2.2. New compiler API
	C.6.2.3. FMI 2.0 RC2 export

	C.6.3. Simulation
	C.6.4. Optimization

	C.7. Release notes for JModelica.org version 1.13
	C.7.1. Highlights
	C.7.2. Compilers
	C.7.2.1. FMI 2.0 RC1 export
	C.7.2.2. Compliance

	C.7.3. Simulation
	C.7.3.1. In-lined switches

	C.7.4. Optimization
	C.7.4.1. New CasADi tool chain

	C.8. Release notes for JModelica.org version 1.12
	C.8.1. Highlights
	C.8.2. Compilers
	C.8.3. Simulation
	C.8.4. Contributors
	C.8.4.1. Previous contributors

	C.9. Release notes for JModelica.org version 1.11
	C.9.1. Highlights
	C.9.2. Compilers
	C.9.3. Simulation
	C.9.3.1. Runtime logging
	C.9.3.2. Support for ModelicaError and assert

	C.9.4. Contributors
	C.9.4.1. Previous contributors

	C.10. Release notes for JModelica.org version 1.10
	C.10.1. Highlights
	C.10.2. Compilers
	C.10.2.1. Export of FMUs for Co-Simulation

	C.10.3. Python
	C.10.3.1. Improved result data access
	C.10.3.2. Improved error handling
	C.10.3.3. Parsing of FMU log files

	C.10.4. Simulation
	C.10.4.1. Support for FMU version 2.0b4
	C.10.4.2. Result filter
	C.10.4.3. Improved solver support

	C.10.5. Optimization
	C.10.5.1. Improved variable scaling
	C.10.5.2. Improved handling of measurement data

	C.10.6. Contributors
	C.10.6.1. Previous contributors

	C.11. Release notes for JModelica.org version 1.9.1
	C.12. Release notes for JModelica.org version 1.9
	C.12.1. Highlights
	C.12.2. Compilers
	C.12.2.1. Improved Modelica compliance
	C.12.2.2. Support for MSL CombiTables
	C.12.2.3. Support for hand guided tearing
	C.12.2.4. Improved function inlining
	C.12.2.5. Memory and execution time improvements in the compiler

	C.12.3. Python
	C.12.3.1. Compile in separate process

	C.12.4. Simulation
	C.12.4.1. Simulation of co-simulation FMUs

	C.12.5. Optimization
	C.12.5.1. Improvements to CasADi-based collocation algorithm

	C.12.6. Contributors
	C.12.6.1. Previous contributors

	C.13. Release notes for JModelica.org version 1.8.1
	C.14. Release notes for JModelica.org version 1.8
	C.14.1. Highlights
	C.14.2. Compilers
	C.14.2.1. Improved Modelica compliance
	C.14.2.2. Function inlining
	C.14.2.3. New state selection algorithm

	C.14.3. Python
	C.14.3.1. Simplified compiling with libraries

	C.14.4. Optimization
	C.14.4.1. Improvements to CasADi-based collocation algorithm

	C.14.5. Contributors
	C.14.5.1. Previous contributors

	C.15. Release notes for JModelica.org version 1.7
	C.15.1. Highlights
	C.15.2. Compilers
	C.15.2.1. Support for mixed systems of equations
	C.15.2.2. Support for tearing
	C.15.2.3. Improved Modelica compliance
	C.15.2.4. Function inlining

	C.15.3. Python
	C.15.3.1. New package structure
	C.15.3.2. Support for shared libraries in FMUs

	C.15.4. Simulation
	C.15.4.1. Simulation of hybrid systems

	C.15.5. Optimization
	C.15.5.1. A novel CasADi-based collocation algorithm

	C.15.6. Contributors
	C.15.6.1. Previous contributors

	C.16. Release notes for JModelica.org version 1.6
	C.16.1. Highlights
	C.16.2. Compilers
	C.16.2.1. Index reduction
	C.16.2.2. Modelica compliance

	C.16.3. Python
	C.16.3.1. Graphical user interface for visualization of simulation and optimization results
	C.16.3.2. Simulation with function inputs
	C.16.3.3. Compilation of XML models
	C.16.3.4. Python version upgrade

	C.16.4. Optimization
	C.16.4.1. Derivative- free optimization of FMUs
	C.16.4.2. Pseudo spectral methods for dynamic optimization

	C.16.5. Eclipse Modelica plugin
	C.16.6. Contributors
	C.16.6.1. Previous contributors

	C.17. Release notes for JModelica.org version 1.5
	C.17.1. Highlights
	C.17.2. Compilers
	C.17.2.1. When clauses
	C.17.2.2. Equation sorting
	C.17.2.3. Connections
	C.17.2.4. Eclipse IDE
	C.17.2.5. Miscellaneous

	C.17.3. Simulation
	C.17.3.1. FMU export
	C.17.3.2. Simulation of ODEs
	C.17.3.3. Simulation of hybrid and sampled systems

	C.17.4. Initialization of DAEs
	C.17.5. Optimization
	C.17.6. Contributors
	C.17.6.1. Previous contributors

	C.18. Release notes for JModelica.org version 1.4
	C.18.1. Highlights
	C.18.2. Compilers
	C.18.2.1. Enumerations
	C.18.2.2. Miscellaneous
	C.18.2.3. Improved reporting of structural singularities
	C.18.2.4. Automatic addition of initial equations

	C.18.3. Python interface
	C.18.3.1. Models
	C.18.3.2. Compiling
	C.18.3.3. initialize, simulate and optimize
	C.18.3.4. Result object

	C.18.4. Simulation
	C.18.4.1. Input trajectories
	C.18.4.2. Sensitivity calculations
	C.18.4.3. Write scaled simulation result to file

	C.18.5. Contributors
	C.18.5.1. Previous contributors

	C.19. Release notes for JModelica.org version 1.3
	C.19.1. Highlights
	C.19.2. Compilers
	C.19.2.1. The Modelica compiler
	Arrays
	Redecare
	Conditional components
	Constants and parameters
	External functions
	Stream connectors
	Miscellaneous

	C.19.2.2. The Optimica compiler
	New class attribute objectiveIntegrand
	Support for minimum time problems

	C.19.3. JModelica.org Model Interface (JMI)
	C.19.3.1. The collocation optimization algorithm
	Dependent parameters
	Support for Lagrange cost functions

	C.19.4. Assimulo
	C.19.5. FMI compliance
	C.19.6. XML model export
	C.19.6.1. noEvent operator
	C.19.6.2. static attribute

	C.19.7. Python integration
	C.19.7.1. High-level functions
	Model files
	New result object

	C.19.7.2. File I/O

	C.19.8. Contributors
	C.19.8.1. Previous contributors

	C.20. Release notes for JModelica.org version 1.2
	C.20.1. Highlights
	C.20.2. Compilers
	C.20.2.1. The Modelica compiler
	Arrays
	Function-like operators
	Functions and algorithms
	Miscellaneous

	C.20.2.2. The Optimica Compiler

	C.20.3. The JModelica.org Model Interface (JMI)
	C.20.3.1. General
	Automatic scaling based on the nominal attribute
	Support for event indicator functions
	Integer and boolean parameters
	Linearization

	C.20.4. The collocation optimization algorithm
	C.20.4.1. Piecewise constant control signals
	C.20.4.2. Free initial conditions allowed
	C.20.4.3. Dens output of optimization result

	C.20.5. New simulation package: Assimulo
	C.20.6. FMI compliance
	C.20.7. XML model export
	C.20.8. Python integration
	C.20.8.1. New high-level functions for optimization and simulation

	C.20.9. Contributors
	C.20.9.1. Previous contributors

	Bibliography

